Sum of Logarithms/Complex Logarithm

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \C$ where $x = r_1 e^{i \theta_1}$ and $y = r_2 e^{i \theta_2}$

Where:

$r_1$ and $r_2$ are both (strictly) positive real numbers.

Then:

$\ln x + \ln y = \map \ln {x y}$

where $\ln$ denotes the complex natural logarithm.


Proof

We have:

\(\ds x\) \(=\) \(\ds r_1 e^{i \theta_1}\)
\(\ds \leadsto \ \ \) \(\ds \ln x\) \(=\) \(\ds \map \ln {r_1} + i \paren {\theta_1 + 2 k \pi}\) Definition of Complex Natural Logarithm

and:

\(\ds y\) \(=\) \(\ds r_2 e^{i \theta_2}\)
\(\ds \leadsto \ \ \) \(\ds \ln y\) \(=\) \(\ds \map \ln {r_2} + i \paren {\theta_2 + 2 k \pi}\) Definition of Complex Natural Logarithm

Finally, we have:

\(\ds x y\) \(=\) \(\ds \paren {r_1 e^{i \theta_1} } \paren {r_2 e^{i \theta_2} }\)
\(\ds \leadsto \ \ \) \(\ds x y\) \(=\) \(\ds \paren {r_1 r_2 e^{i \paren {\theta_1 + \theta_2} } }\) Product of Powers
\(\ds \leadsto \ \ \) \(\ds \map \ln {x y}\) \(=\) \(\ds \map \ln {r_1 r_2} + i \paren {\theta_1 + \theta_2 + 2 k \pi}\) Definition of Complex Natural Logarithm

Therefore:

\(\ds \ln x + \ln y\) \(=\) \(\ds \map \ln {r_1} + i \paren {\theta_1 + 2 k \pi} + \map \ln {r_2} + i \paren {\theta_2 + 2 k \pi}\)
\(\ds \) \(=\) \(\ds \map \ln {r_1 r_2} + i \paren {\theta_1 + \theta_2 + 2 k \pi}\) Sum of Logarithms/Natural Logarithm
\(\ds \) \(=\) \(\ds \map \ln {x y}\)

$\blacksquare$