Sum of Logarithms

From ProofWiki
Jump to navigation Jump to search

Theorem



Natural Logarithm

Let $x, y \in \R$ be strictly positive real numbers.


Then:

$\ln x + \ln y = \map \ln {x y}$

where $\ln$ denotes the natural logarithm.


Complex Logarithm

Let $x, y \in \C$ where $x = r_1 e^{i \theta_1}$ and $y = r_2 e^{i \theta_2}$

Where:

$r_1$ and $r_2$ are both (strictly) positive real numbers.

Then:

$\ln x + \ln y = \map \ln {x y}$

where $\ln$ denotes the complex natural logarithm.


General Logarithm

Let $x, y, b \in \R$ be strictly positive real numbers such that $b > 1$.


Then:

$\log_b x + \log_b y = \map {\log_b} {x y}$

where $\log_b$ denotes the logarithm to base $b$.


Also see


Sources