Sum of Logarithms/Natural Logarithm/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x, y \in \R$ be strictly positive real numbers.


Then:

$\ln x + \ln y = \map \ln {x y}$

where $\ln$ denotes the natural logarithm.


Proof

\(\ds \ln x + \ln y\) \(=\) \(\ds \int_1^x \dfrac {\d t} t + \int_1^y \dfrac {\d s} s\) Definition of Natural Logarithm
\(\ds \) \(=\) \(\ds \int_1^x \dfrac {\d t} t + \int_x^{x y} \dfrac {\d t / x} {t / x}\) Integration by Substitution: $s \mapsto t / x$, $\d s \mapsto \d t / x$, $1 \mapsto x$, $y \mapsto x y$
\(\ds \) \(=\) \(\ds \int_1^x \dfrac {\d t} t + \int_x^{x y} \dfrac {\d t} t\) simplifying
\(\ds \) \(=\) \(\ds \int_1^{x y} \dfrac {\d t} t\) Sum of Integrals on Adjacent Intervals for Continuous Functions
\(\ds \) \(=\) \(\ds \ln x y\) Definition of Natural Logarithm

$\blacksquare$


Sources