Sum of Squares of Sine and Cosine/Proof 5
Jump to navigation
Jump to search
Theorem
- $\cos^2 x + \sin^2 x = 1$
Proof
\(\ds \cos^2 x + \sin^2 x\) | \(=\) | \(\ds \paren {\frac {e^{i x} + e^{-i x} } 2}^2 + \sin^2 x\) | Euler's Cosine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\frac {e^{i x} + e^{-i x} } 2}^2 + \paren {\frac {e^{i x} - e^{-i x} } {2 i} }^2\) | Euler's Sine Identity | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {e^{i x} }^2 + 2 e^{-i x} e^{i x} + \paren {e^{-i x} }^2} 4 + \paren {\frac {e^{i x} - e^{-i x} } {2 i} }^2\) | Square of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {\paren {e^{i x} }^2 + 2 e^{-i x} e^{i x} + \paren {e^{-i x} }^2} 4 + \frac {\paren {e^{i x} }^2 - e^{-i x} e^{i x} + \paren {e^{-i x} }^2} {-4}\) | Square of Difference and $i^2 = -1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{2 i x} + 2 + e^{-2 i x} } 4 + \frac {e^{2 i x} - 2 + e^{-2 i x} } {-4}\) | Exponential of Sum | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac {e^{2 i x} + 2 + e^{-2 i x} - e^{2 i x} + 2 - e^{-2 i x} } 4\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 4 4\) | simplifying | |||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $2$: Functions, Limits and Continuity: The Elementary Functions: $4$