Sum of nth Fibonacci Number over nth Power of 2/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{n \mathop = 0}^\infty \frac {F_n} {2^n} = 2$

where $F_n$ is the $n$th Fibonacci number.


Proof

From the Euler-Binet Formula, we have:

$F_n = \dfrac {\phi^n - \paren {1 - \phi}^n} {\sqrt 5}$

Therefore:

\(\ds \sum_{n \mathop = 0}^\infty \frac{F_n} {2^n}\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \dfrac {\phi^n - \paren {1 - \phi}^n} {\sqrt 5 \times 2^n}\) Euler-Binet Formula
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {\dfrac {1 + \sqrt 5} 2}^n - \paren {1 - \paren {\dfrac {1 + \sqrt 5} 2 } }^n} {\sqrt 5 \times 2^n}\) Definition of Golden Mean
\(\ds \) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \dfrac {\paren {\dfrac {1 + \sqrt 5} 2}^n - \paren {\dfrac {1 - \sqrt 5} 2 }^n} {\sqrt 5 \times 2^n}\)
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 5} \sum_{n \mathop = 0}^\infty \paren {\dfrac {1 + \sqrt 5} 4}^n - \dfrac 1 {\sqrt 5} \sum_{n \mathop = 0}^\infty \paren {\dfrac {1 - \sqrt 5} 4}^n\) Product of Powers and $2^2 = 4$
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 5} \paren {\dfrac 1 {1 - \dfrac {1 + \sqrt 5 } 4} } - \dfrac 1 {\sqrt 5} \paren {\dfrac 1 {1 - \dfrac {1 - \sqrt 5} 4} }\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \dfrac 1 {\sqrt 5} \paren {\dfrac 1 {1 - \dfrac {1 + \sqrt 5} 4} } \times \dfrac 4 4 - \dfrac 1 {\sqrt 5} \paren {\dfrac 1 {1 - \dfrac {1 - \sqrt 5} 4} } \times \dfrac 4 4\) multiplying top and bottom by $4$
\(\ds \) \(=\) \(\ds \dfrac 4 {\sqrt 5} \paren {\dfrac 1 {3 - \sqrt 5} } - \dfrac 4 {\sqrt 5} \paren {\dfrac 1 {3 + \sqrt 5} }\)
\(\ds \) \(=\) \(\ds \dfrac 4 {\sqrt 5} \paren {\dfrac 1 {3 - \sqrt 5} } \times \paren {\dfrac {3 + \sqrt 5} {3 + \sqrt 5} } - \dfrac 4 {\sqrt 5} \paren {\dfrac 1 {3 + \sqrt 5} } \times \paren {\dfrac {3 - \sqrt 5} {3 - \sqrt 5} }\) multiplying top and bottom by $\paren {3 + \sqrt 5}$ and by $\paren {3 - \sqrt 5}$
\(\ds \) \(=\) \(\ds \dfrac 4 {\sqrt 5} \paren {\dfrac {3 + \sqrt 5} 4} - \dfrac 4 {\sqrt 5} \paren {\dfrac {3 - \sqrt 5} 4}\)
\(\ds \) \(=\) \(\ds \paren {\dfrac {3 + \sqrt 5} {\sqrt 5} } - \paren {\dfrac {3 - \sqrt 5} {\sqrt 5} }\)
\(\ds \) \(=\) \(\ds 2\)

$\blacksquare$