Sum of nth Fibonacci Number over nth Power of 2/Proof 4

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_{n \mathop = 0}^\infty \frac {F_n} {2^n} = 2$

where $F_n$ is the $n$th Fibonacci number.


Proof

First, let:

$S = \ds \sum_{n \mathop = 0}^\infty \frac {F_n} {2^n}$


Some sundry results:

\(\ds \sum_{k \mathop = 0}^n F_k\) \(=\) \(\ds F_{n + 2} - 1\) Sum of Sequence of Fibonacci Numbers
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds F_{n + 2}\) \(=\) \(\ds \paren {\sum_{k \mathop = 0}^n F_k} + 1\)

and:

\(\ds \sum_{n \mathop = 0}^\infty \frac 1 {2^n}\) \(=\) \(\ds \frac 1 {1 - \frac 1 2}\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \frac 1 {1 / 2}\)
\(\text {(2)}: \quad\) \(\ds \) \(=\) \(\ds 2\)


We have:

\(\ds S\) \(=\) \(\ds \sum_{n \mathop = 0}^\infty \frac {F_n} {2^n}\)
\(\ds \) \(=\) \(\ds \frac {F_0} {2^0} + \frac {F_1} {2^1} + \sum_{n \mathop = 2}^\infty \frac {F_n} {2^n}\)
\(\ds \) \(=\) \(\ds \frac 0 1 + \frac 1 2 + \sum_{n \mathop = 2}^\infty \frac {F_n} {2^n}\) Definition of Fibonacci Numbers: $F_0 = 0$ and $F_1 = 1$
\(\ds \) \(=\) \(\ds \frac 1 2 + \sum_{n \mathop = 2}^\infty \frac {F_n} {2^n}\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \sum_{n \mathop = 0}^\infty \frac{F_{n + 2} } {2^{n + 2} }\) Translation of Index Variable of Summation
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \frac {F_{n + 2} } {2^n} }\) as $2^{n + 2} = 2^2 \times 2^n = 4 \times 2^n$
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \frac 1 {2^n} \paren {\paren {\sum_{k \mathop = 0}^n F_k} + 1} }\) from $(1)$
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \frac {F_k} {2^n} } + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \frac 1 {2^n} }\)
\(\ds \) \(=\) \(\ds \frac 1 2 + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \frac {F_k} {2^n} } + \frac 2 4\) from $(2)$
\(\text {(3)}: \quad\) \(\ds \) \(=\) \(\ds 1 + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \frac {F_k} {2^n} }\)


We have:

\(\ds 1 + \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \frac {F_k} {2^n} }\) \(=\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \frac 1 4 \paren {\sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \frac{F_k} {2^n} }\) \(<\) \(\ds S\)


Hence we can show that $S$ is absolutely convergent by the Ratio Test:

For $S$ we get $a_n = \dfrac {F_n} {2^n}$ therefore

\(\ds \lim_{n \mathop \to \infty} \size {\frac {a_{n + 1} } {a_n } }\) \(=\) \(\ds \lim_{n \mathop \to \infty} \size {\frac {\frac {F_{n + 1 } } {2^{n + 1 } } } {\frac {F_n } {2^n } } }\) substituting $a_n$ and $a_{n + 1}$ from above
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \size {\frac {2^n F_{n + 1 } } {2^{n + 1 } F_n} }\) reformatting division of fractions
\(\ds \) \(=\) \(\ds \lim_{n \mathop \to \infty} \size {\frac {F_{n + 1} } {2F_n} }\) cancelling $2^n$ from top and bottom
\(\ds \) \(=\) \(\ds \lim_{n \rightarrow \infty} \size {\frac {F_n + F_{n - 1} } {F_n + F_n} }\) Definition of Fibonacci Numbers: $F_{n + 1} = F_n + F_{n - 1}$ and $2F_n = F_n + F_n$
\(\ds \) \(<\) \(\ds 1\) $F_n > F_{n - 1}$ so $F_n + F_n > F_n + F_{n - 1}$

Therefore the double summation is absolutely convergent and we can exchange the order of the sums.


We note that:

$0 \le k \le n < \infty$

Therefore by Fubini's Theorem for Infinite Sums:

$\ds \sum_{n \mathop = 0}^\infty \sum_{k \mathop = 0}^n \frac {F_k} {2^n} = \sum_{k \mathop = 0}^\infty \sum_{n \mathop = k}^\infty \frac{F_k} {2^n}$

and it follows that:

\(\ds S\) \(=\) \(\ds 1 + \frac 1 4 \paren {\sum_{k \mathop = 0}^\infty \sum_{n \mathop = k}^\infty \frac {F_k} {2^n} }\) continuing from $(3)$
\(\ds \) \(=\) \(\ds 1 + \frac 1 4 \paren {\sum_{k \mathop = 0}^\infty \paren {F_k \sum_{n \mathop = 0}^\infty \paren {\frac 1 {2^k} } \frac 1 {2^n} } }\) reindexing the sum
\(\ds \) \(=\) \(\ds 1 + \frac 1 4 \paren {\sum_{k \mathop = 0}^\infty \paren {\frac 1 {2^k} F_k \sum_{n \mathop = 0}^\infty \paren {\frac 1 {2^n} } } }\)
\(\ds \) \(=\) \(\ds 1 + \frac 1 4 \paren {2 \sum_{k \mathop = 0}^\infty \frac {F_k} {2^k} }\) from $(2)$
\(\ds \) \(=\) \(\ds 1 + \frac S 2\) as $S = \ds \sum_{k \mathop = 0}^\infty \frac {F_k} {2^k}$ by hypothesis
\(\ds \leadsto \ \ \) \(\ds \dfrac S 2\) \(=\) \(\ds 1\)
\(\ds \leadsto \ \ \) \(\ds S\) \(=\) \(\ds 2\)

Hence the result.

$\blacksquare$