Sum over k from 1 to Infinity of Zeta of 2k Minus One
Jump to navigation
Jump to search
Theorem
\(\ds \sum_{k \mathop = 1}^\infty \paren {\map \zeta {2k} - 1}\) | \(=\) | \(\ds \dfrac 3 4\) |
Proof
Sum down each column, then sum across:
- $\begin{array}{r|cccccccccc} \paren {\map \zeta {2k} - 1} & & & & & & & \\ \hline \paren {\map \zeta 2 - 1} & \paren {\dfrac 1 2}^2 & \paren {\dfrac 1 3}^2 & \paren {\dfrac 1 4}^2 & \cdots & \paren {\dfrac 1 n}^2 & \cdots \\ \paren {\map \zeta 4 - 1} & \paren {\dfrac 1 2}^4 & \paren {\dfrac 1 3}^4 & \paren {\dfrac 1 4}^4 & \cdots & \paren {\dfrac 1 n}^4 & \cdots \\ \paren {\map \zeta 6 - 1} & \paren {\dfrac 1 2}^6 & \paren {\dfrac 1 3}^6 & \paren {\dfrac 14}^6 & \cdots & \paren {\dfrac 1 n}^6 & \cdots \\ \paren {\map \zeta 8 - 1} & \paren {\dfrac 1 2}^8 & \paren {\dfrac 1 3}^8 & \paren {\dfrac 1 4}^8 & \cdots & \paren {\dfrac 1 n}^8 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \hline \ds \sum_{k \mathop = 1}^\infty \paren {\map \zeta {2k} - 1} & \paren {\dfrac 1 1} \paren {\dfrac 1 3} & \paren {\dfrac 1 2} \paren {\dfrac 1 4} & \paren {\dfrac 1 3} \paren {\dfrac 1 5} & \cdots & \paren {\dfrac 1 {n - 1} } \paren {\dfrac 1 {n+1} } & \cdots \end{array}$
First, summing down the array:
\(\ds \paren {\dfrac 1 {n^2} } + \paren {\dfrac 1 {n^2} }^2 + \paren {\dfrac 1 {n^2} }^3 + \cdots\) | \(=\) | \(\ds \paren {\dfrac 1 {n^2} } \paren {\dfrac 1 {1 - \dfrac 1 {n^2} } }\) | Sum of Infinite Geometric Sequence: Corollary $1$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac 1 {n^2} } \paren {\dfrac {n^2} {n^2 - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {n^2 - 1}\) |
Next, summing across, we note:
\(\ds \dfrac 1 {n^2 - 1}\) | \(=\) | \(\ds \dfrac 1 2 \paren {\dfrac 1 {n - 1} - \dfrac 1 {n+1} }\) |
Therefore,
\(\ds \paren {\dfrac 1 1 } \paren {\dfrac 1 3 } + \paren {\dfrac 1 2 } \paren {\dfrac 1 4 } + \paren {\dfrac 1 3 } \paren {\dfrac 1 5 } + \cdots\) | \(=\) | \(\ds \dfrac 1 2 \paren {\paren {\dfrac 1 1 - \dfrac 1 3 } + \paren {\dfrac 1 2 - \dfrac 1 4 } + \paren {\dfrac 1 3 - \dfrac 1 5 } + \cdots }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren {\dfrac 1 1 + \dfrac 1 2 - \paren {\dfrac 1 3 - \dfrac 1 3 } - \paren {\dfrac 1 4 - \dfrac 1 4 } - \cdots }\) | regroup terms | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 2 \paren {\dfrac 3 2 - \paren 0 - \paren 0 - \paren 0 - \cdots }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 3 4\) |
Hence:
\(\ds \sum_{k \mathop = 1}^\infty \paren {\map \zeta {2k} - 1}\) | \(=\) | \(\ds \dfrac 3 4\) |
$\blacksquare$
Also see
- Sum over k from 2 to Infinity of Zeta of k Minus One
- Sum over k from 1 to Infinity of Zeta of 2k Over Odd Powers of 2
Sources
- Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannZetaFunction.html