Sum over k from 2 to Infinity of Zeta of k Minus One
Jump to navigation
Jump to search
Theorem
\(\ds \sum_{k \mathop = 2}^\infty \paren {\map \zeta k - 1}\) | \(=\) | \(\ds 1\) |
Proof
Sum down each column, then sum across:
- $\begin{array}{r|cccccccccc} \paren {\map \zeta k - 1} & & & & & & & \\ \hline \paren {\map \zeta 2 - 1} & \paren {\dfrac 1 2}^2 & \paren {\dfrac 1 3}^2 & \paren {\dfrac 1 4}^2 & \cdots & \paren {\dfrac 1 n}^2 & \cdots \\ \paren {\map \zeta 3 - 1} & \paren {\dfrac 1 2}^3 & \paren {\dfrac 1 3}^3 & \paren {\dfrac 1 4}^3 & \cdots & \paren {\dfrac 1 n}^3 & \cdots \\ \paren {\map \zeta 4 - 1} & \paren {\dfrac 1 2}^4 & \paren {\dfrac 1 3}^4 & \paren {\dfrac 14}^4 & \cdots & \paren {\dfrac 1 n}^4 & \cdots \\ \paren {\map \zeta 5 - 1} & \paren {\dfrac 1 2}^5 & \paren {\dfrac 1 3}^5 & \paren {\dfrac 1 4}^5 & \cdots & \paren {\dfrac 1 n}^5 & \cdots \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ \hline \ds \sum_{k \mathop = 2}^\infty \paren {\map \zeta k - 1} & \paren {\dfrac 1 1} \paren {\dfrac 1 2} & \paren {\dfrac 1 2} \paren {\dfrac 1 3} & \paren {\dfrac 1 3} \paren {\dfrac 1 4} & \cdots & \paren {\dfrac 1 {n - 1} } \paren {\dfrac 1 n} & \cdots \end{array}$
First, summing down the array:
\(\ds \paren {\dfrac 1 n}^2 \paren {1 + \paren {\dfrac 1 n } + \paren {\dfrac 1 n }^2 + \cdots }\) | \(=\) | \(\ds \paren {\dfrac 1 n}^2 \paren {\dfrac 1 {1 - \dfrac 1 n} }\) | Sum of Infinite Geometric Sequence | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac 1 n}^2 \paren {\dfrac n {n - 1} }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac 1 {n} } \paren {\dfrac 1 {n - 1} }\) |
Next, summing across, we note:
\(\ds \paren {\dfrac 1 n } \paren {\dfrac 1 {n - 1} }\) | \(=\) | \(\ds \paren {\dfrac 1 {n - 1} } - \paren {\dfrac 1 n}\) |
Therefore,
\(\ds \paren {\dfrac 1 1 } \paren {\dfrac 1 2 } + \paren {\dfrac 1 2 } \paren {\dfrac 1 3 } + \paren {\dfrac 1 3 } \paren {\dfrac 1 4 } + \cdots\) | \(=\) | \(\ds \paren {\dfrac 1 1 - \dfrac 1 2 } + \paren {\dfrac 1 2 - \dfrac 1 3 } + \paren {\dfrac 1 3 - \dfrac 1 4 } + \cdots\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac 1 1 - \paren {\dfrac 1 2 - \dfrac 1 2 } - \paren {\dfrac 1 3 - \dfrac 1 3 } - \paren {\dfrac 1 4 - \dfrac 1 4 } - \cdots }\) | regroup terms | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\dfrac 1 1 - \paren 0 - \paren 0 - \paren 0 - \cdots }\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds 1\) |
Hence:
\(\ds \sum_{k \mathop = 2}^\infty \paren {\map \zeta k - 1}\) | \(=\) | \(\ds 1\) |
$\blacksquare$
Also see
- Sum over k from 1 to Infinity of Zeta of 2k Minus One
- Sum over k from 1 to Infinity of Zeta of 2k Over Odd Powers of 2
Sources
- Weisstein, Eric W. "Riemann Zeta Function." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RiemannZetaFunction.html