Sum over k from 2 to Infinity of Zeta of k Over k Alternating in Sign

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \sum_{k \mathop = 2}^\infty \dfrac {\paren {-1}^k} k \map \zeta k\) \(=\) \(\ds \dfrac {\map \zeta 2} 2 - \dfrac {\map \zeta 3} 3 + \dfrac {\map \zeta 4} 4 - \dfrac {\map \zeta 5} 5 + \cdots\)
\(\ds \) \(=\) \(\ds \gamma\)


Proof 1

\(\ds \sum_{k \mathop = 2}^{\infty} \paren {-1}^k \map \zeta k x^{k - 1}\) \(=\) \(\ds \map H x\) Power Series Expansion for Harmonic Numbers
\(\ds \leadsto \ \ \) \(\ds \int_{\to 0}^{\to 1} \sum_{k \mathop = 2}^{\infty} \paren {-1}^k \map \zeta k x^{k - 1} \rd x\) \(=\) \(\ds \int_{\to 0}^{\to 1} \map H x \rd x\) integrating with respect to $x$
\(\ds \leadsto \ \ \) \(\ds \sum_{k \mathop = 2}^\infty \dfrac {\paren {-1}^k} k \map \zeta k\) \(=\) \(\ds \int_{\to 0}^{\to 1} \map H x \rd x\)
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \int_{\to 0}^{\to 1} \paren {\dfrac {1 - t^x} {1 - t} } \rd t \rd x\) Reciprocal times Derivative of Gamma Function: Corollary and Extension of Harmonic Number to Non-Integer Argument
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \int_{\to 0}^{\to 1} \paren {\dfrac {1 - e^{x \ln t} } {1 - t} } \rd t \rd x\) Logarithm of Power
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} } \rd t \rd x - \int_{\to 0}^{\to 1} \int_{\to 0}^{\to 1} \paren {\dfrac {e^{x \ln t} } {1 - t} } \rd t \rd x\) Linear Combination of Integrals
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} } \rd t \bigintlimits x 0 1 - \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} } \rd t \intlimits {\dfrac {e^{x \ln t} } {\ln t} } 0 1\) Primitive of $e^{a x}$ and Primitive of Constant
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} } \rd t - \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} } \rd t \paren {\dfrac {t - 1} {\ln t} }\)
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} } \rd t + \int_{\to 0}^{\to 1} \paren {\dfrac 1 {\ln t} } \rd t\)
\(\ds \) \(=\) \(\ds \int_{\to 0}^{\to 1} \paren {\dfrac 1 {1 - t} + \dfrac 1 {\ln t} } \rd t\) Linear Combination of Integrals
\(\ds \) \(=\) \(\ds \int_\infty^0 \paren {\dfrac 1 {1 - e^{-u} } + \dfrac 1 {\map \ln {e^{-u} } } } \paren {-e^{-u} \rd u}\) $t \to e^{-u}$ and $\rd t \to -e^{-u} \rd u$
\(\ds \) \(=\) \(\ds \int_0^\infty \paren {\dfrac {e^{-u} } {1 - e^{-u} } - \dfrac {e^{-u} } u} \rd u\) Reversal of Limits of Definite Integral
\(\ds \) \(=\) \(\ds - \int_0^\infty \paren {\frac {e^{-u} } u - \frac {e^{- u} } {1 - e^{-u} } } \rd u\)
\(\ds \) \(=\) \(\ds -\map \psi 1\) Gauss's Integral Form of Digamma Function
\(\ds \) \(=\) \(\ds \gamma\) Digamma Function of One

$\blacksquare$


Proof 2

\(\ds \map \ln {\map \Gamma {x + 1} }\) \(=\) \(\ds -\gamma x + \sum_{k \mathop = 2}^{\infty} \dfrac {\map \zeta k \paren {-x}^k} k\) Power Series Expansion for Logarithm of Gamma Function
\(\ds \) \(=\) \(\ds -\gamma x + \dfrac {\map \zeta 2 x^2} 2 - \dfrac {\map \zeta 3 x^3} 3 + \dfrac {\map \zeta 4 x^4} 4 - \dfrac {\map \zeta 5 x^5} 5 + \cdots\)
\(\ds \leadsto \ \ \) \(\ds \map \ln {\map \Gamma {1 + 1} }\) \(=\) \(\ds -\gamma + \sum_{k \mathop = 2}^{\infty} \dfrac {\map \zeta k \paren {-1}^k} k\) setting $x = 1$
\(\ds \leadsto \ \ \) \(\ds 0\) \(=\) \(\ds -\gamma + \dfrac {\map \zeta 2} 2 - \dfrac {\map \zeta 3} 3 + \dfrac {\map \zeta 4} 4 - \dfrac {\map \zeta 5} 5 + \cdots\) $\map \Gamma 2 = 1$ and Natural Logarithm of 1 is 0
\(\ds \leadsto \ \ \) \(\ds \gamma\) \(=\) \(\ds \dfrac {\map \zeta 2} 2 - \dfrac {\map \zeta 3} 3 + \dfrac {\map \zeta 4} 4 - \dfrac {\map \zeta 5} 5 + \cdots\) rearranging

$\blacksquare$


Sources