Sum over k of n+k Choose 2 k by 2 k Choose k by -1^k over k+1/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\paren {-1}^k} {k + 1} = \sqbrk {n = 0}$


Proof

\(\ds \) \(\) \(\ds \sum_k \binom {n + k} {2 k} \binom {2 k} k \frac {\left({-1}\right)^k} {k + 1}\)
\(\ds \) \(=\) \(\ds \sum_k \binom {n + k} k \binom n k \frac {\left({-1}\right)} {k + 1}\) Product of $\dbinom r m$ with $\dbinom m k$
\(\ds \) \(=\) \(\ds \sum_k \binom {n + k} k \binom {n + 1} {k + 1} \frac {\left({-1}\right)^k} {n + 1}\) Factors of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \sum_k \binom {- \left({n + 1}\right)} k \binom {n + 1} {k + 1}\) Negated Upper Index of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \binom {n + 1 - \left({n + 1}\right)} {n + 1 - 1 + 0}\) Sum over $k$ of $\dbinom r {m + k} \dbinom s {n + k}$
\(\ds \) \(=\) \(\ds \frac 1 {n + 1} \binom 0 n\)
\(\ds \) \(=\) \(\ds \left[{n = 0}\right]\) Definition of Binomial Coefficient

$\blacksquare$


Sources