Summation over Union of Disjoint Finite Index Sets
Jump to navigation
Jump to search
![]() | This article needs proofreading. Please check it for mathematical errors. If you believe there are none, please remove {{Proofread}} from the code.To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Proofread}} from the code. |
Theorem
Let $\struct{G, +}$ be a commutative monoid.
Let $I$ and $J$ be disjoint finite indexing sets.
Let $K = I \cup J$.
Let $\family{g_k}_{k \mathop \in K}$ be an indexed family of elements of $G$.
Then:
- $\ds \sum_{k \mathop \in K} g_k = \paren{\sum_{i \mathop \in I} g_i} + \paren{\sum_{j \mathop \in J} g_j}$
where:
- $\ds \sum_{k \mathop \in K} g_k$ is the summation of $g$ over $K$
- $\ds \sum_{i \mathop \in I} g_i$ is the summation of the restriction of $g$ over $I$
- $\ds \sum_{j \mathop \in J} g_j$ is the summation of the restriction of $g$ over $J$
Proof
Let $\set{i_1, i_2, \ldots, i_n}$ be an enumeration of $I$.
Let $\set{j_1, j_2, \ldots, j_m}$ be an enumeration of $J$.
Let $k: \closedint 1 {n+m}$ be the mapping defined by:
- $k_l = \begin{cases}
i_l & : \text{ if } 1 \le l \le n \\ j_{l-n} & : \text{ if } l > n \\ \end{cases}$
From Union of Bijections with Disjoint Domains and Codomains is Bijection
- $\set{k_1, k_2, \ldots, k_{n + m}}$ is an enumeration of $K$
We have:
\(\ds \sum_{k \mathop \in K} g_k\) | \(=\) | \(\ds \sum_{l \mathop = 1}^{n \mathop + m} g_{k_l}\) | Definition of Summation over Finite Index | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\sum_{l \mathop = 1}^n g_{k_l} } + \paren{\sum_{l \mathop = n \mathop + 1}^{n \mathop + m} g_{k_l} }\) | Monoid Axiom $\text S 1$: Associativity | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\sum_{l \mathop = 1}^n g_{i_l} } + \paren{\sum_{l \mathop = n \mathop + 1}^{n \mathop + m} g_{j_{l \mathop - n} } }\) | definition of $k$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\sum_{l \mathop = 1}^n g_{i_l} } + \paren{\sum_{l \mathop = 1 }^m g_{j_l} }\) | re-indexing second summation | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren{\sum_{i \mathop \in I} g_i } + \paren{\sum_{j \mathop \in J} g_j}\) | Definition of Summation over Finite Index |
$\blacksquare$