Surjection/Examples/Floor of Half x+1 on Integers
Jump to navigation
Jump to search
Example of Surjection
Let $f: \Z \to \Z$ be the mapping defined on the set of integers as:
- $\forall x \in \Z: \map f x = \floor {\dfrac {x + 1} 2}$
where $\floor {\, \cdot \,}$ denotes the floor function.
Then $f$ is a surjection, but not an injection.
Proof
Let $y \in \Z$ be an integer.
Consider the integer $x = 2 y$.
Then:
\(\ds \map f x\) | \(=\) | \(\ds \floor {\dfrac {\paren {2 y} + 1} 2}\) | Definition of $f$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \floor {\dfrac {2 y} 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds y\) |
Thus:
- $\forall y \in \Z: \exists x \in \Z: \map f x = y$
Thus $f$ is a surjection by definition.
$\Box$
Let $n \in \Z$ be an integer.
Let $x_1 = 2 n - 1$ and $x_2 = 2 n$.
Then:
\(\ds \map f {x_1}\) | \(=\) | \(\ds \floor {\dfrac {\paren {2 n - 1} + 1} 2}\) | Definition of $f$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \floor {\dfrac {2 n} 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n\) |
while:
\(\ds \map f {x_2}\) | \(=\) | \(\ds \floor {\dfrac {\paren {2 n} + 1} 2}\) | Definition of $f$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \floor {n + \dfrac 1 2}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds n\) |
Thus we have that $x_1 \ne x_2$ but $\map f {x_1} = \map f {x_2}$.
Hence by definition $f$ is not an injection.
$\blacksquare$
Sources
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): Chapter $4$: Mappings: Exercise $5$