Symbols:Arithmetic and Algebra

From ProofWiki
Jump to navigation Jump to search

Symbols used in Arithmetic and Algebra

Addition

$+$

Plus, or added to.

A binary operation on two numbers or variables.


Its $\LaTeX$ code is + .


Positive Quantity

$+$

A unary operator prepended to a number to indicate that it is positive.

For example:

$+5$

If a number does not have either $+$ or $-$ prepended, it is assumed to be positive by default.


The $\LaTeX$ code for \(+5\) is +5 .


Subtraction

$-$

Minus, or subtract.

A binary operation on two numbers or variables.


Its $\LaTeX$ code is - .


Negative Quantity

$-$

A unary operator prepended to a number to indicate that it is negative.

For example:

$-6$

The $\LaTeX$ code for \(-6\) is -6 .


Multiplication (Arithmetic)

$\times$

Times, or multiplied by.

A binary operation on two numbers or variables.


Usually used when numbers are involved (as opposed to variables) to avoid confusion with the use of $\cdot$ which could be confused with the decimal point.

The symbol $\times$ is cumbersome in the context of algebra, and may be confused with the letter $x$.


Its $\LaTeX$ code is \times .


Multiplication (Algebra)

$\cdot$

$x \cdot y$ means $x$ times $y$, or $x$ multiplied by $y$.

A binary operation on two variables.


Usually used when variables are involved (as opposed to numbers) to avoid confusion with the use of $\times$ which could be confused with the symbol $x$ when used as a variable.

It is preferred that the symbol $\cdot$ is not used in arithmetic between numbers, as it can be confused with the decimal point.


Its $\LaTeX$ code is \cdot .


Division

$\div$, $/$

Divided by.

A binary operation on two numbers or variables.


$x \div y$ and $x / y$ both mean $x$ divided by $y$, or $x \times y^{-1}$.

$x / y$ can also be rendered $\dfrac x y$ (and often is -- it tends to improve comprehension for complicated expressions).


$x \div y$ is rarely seen outside grade school.


Their $\LaTeX$ codes are as follows:

The $\LaTeX$ code for \(x \div y\) is x \div y .
The $\LaTeX$ code for \(x / y\) is x / y .
The $\LaTeX$ code for \(\dfrac {x} {y}\) is \dfrac {x} {y} .


Plus or Minus

$\pm$

Plus or minus.

$a \pm b$ means $a + b$ or $a - b$, often seen when expressing the two solutions of a quadratic equation.


Its $\LaTeX$ code is \pm .


Absolute Value

$\size x$

The absolute value of the variable $x$, when $x \in \R$.

$\size x = \begin {cases} x & : x > 0 \\ 0 & : x = 0 \\ -x & : x < 0 \end {cases}$


The $\LaTeX$ code for \(\size x\) is \size x .


Binomial Coefficent

$\dbinom n m$

The binomial coefficient, which specifies the number of ways you can choose $m$ objects from $n$ (all objects being distinct).


Formally defined as:

$\dbinom n m = \begin {cases} \dfrac {n!} {m! \, \paren {n - m}!} & : m \le n \\ 0 & : m > n \end {cases}$


The $\LaTeX$ code for \(\dbinom {n} {m}\) is \dbinom {n} {m}  or \displaystyle {n} \choose {m}.