Talk:Combination Theorem for Continuous Functions/Real

From ProofWiki
Jump to navigation Jump to search

Why need the subset be open? None of the proofs use this. The functions are ideally defined on an open neighbourhood of the subset, but that's something different. --Lord_Farin 12:40, 9 March 2012 (EST)

I'm racking my brains ... nope, haven't a clue. Must be a mistake, like a copypasta from something else. --prime mover 13:13, 9 March 2012 (EST)

Open-ness is used here: if you trace it back to Definition:Continuous Real Function at Point the definition is

Then $f$ is continuous at $x$ when the limit of $f \left({y}\right)$ as $y \to x$ exists and:
$\ds \lim_{y \to x} \ f \left({y}\right) = f \left({x}\right)$

Now looking at Definition:Limit of Real Function; limits are only defined on open intervals $(a,b) \subseteq \R$.

The same inconsistency arises in Definition:Continuous Real Function on Subset where $A \subseteq \R$ is not assumed to be open.

Everything needs to happen in open sets; since it is possible to take limits towards a point in all possible directions. The notion of continuity is necessarily different in a closed set $[a,b]$, where the standard definition is that $f \in \mathcal C([a,b])$ if $f \in \mathcal C((a,b))$ and the left limit at $a$ and right limit at $b$ exist and equal the value of the function (this is probably called left- and right- continuity). You can't allow a proper limit at $a$ since it's not possible to tend to $a$ from the left, and similarly for $b$.

Alternatively; the definition of a limit would have to be changed to include non-interior points of a set.

Also; $\Q$ should be excluded from the possible fields $X$ can be, since a priori $\Q$ doesn't carry a topology.

Finally, to get on to the reason I ended up on this page in the first place: is there somewhere a definition of a notation for sets of continuous functions between metric, topological spaces etc.? $\mathcal C(X,Y)$ or something similar doesn't show up on Definition:Continuity --Linus44 (talk) 20:46, 22 March 2013 (UTC)

$\Q$ is conventionally given its subspace topology as a subspace of $\R$. There is certainly a topological notion of limit at any limit point of the domain. --Dfeuer (talk) 21:06, 22 March 2013 (UTC)
I disagree, but ok. --Linus44 (talk) 21:21, 22 March 2013 (UTC)
What exactly do you disagree with? If $f$ has domain $D$ and $p$ is a limit point of $D$, then $y$ is a limit as $x$ approaches $p$ of $f(x)$ iff for every net $k$ in $D\setminus \{p\}$ converging to $p$, $f \circ k$ converges to $y$. --Dfeuer (talk) 21:37, 22 March 2013 (UTC)
I don't disagree that it's rigorous. I disagree that $\Q$ is conventionally given a topology. The whole point of analysis is completeness; the standard theorems of real analysis (the clue's in the name) serve no purpose on $\Q$ since in most limits won't exist. It only conventionally has a topology when you ask a number theorist, and then it's a $p$-adic one. In any case that was mostly a side-note. --Linus44 (talk) 21:45, 22 March 2013 (UTC)
Then we can just fix it by specifying the topology on $\Q$. --Dfeuer (talk) 21:51, 22 March 2013 (UTC)
Sure, it isn't all that important. --Linus44 (talk) 21:57, 22 March 2013 (UTC)

Of course $\Q$ can be given a topology. $\Q$ under the usual metric is a metric space. The fact that it is not complete is a detail but that does not stop it being a topology. There is absolutely nothing to disagree with. This is utterly incontrovertible. --prime mover (talk) 22:31, 22 March 2013 (UTC)

It's really not important, it just looked odd. To re-ask: is there somewhere a definition of a notation for sets of continuous functions between metric, topological spaces etc.? $\mathcal C(X,Y)$ or something similar doesn't show up on Definition:Continuity --Linus44 (talk) 23:29, 22 March 2013 (UTC)
no --prime mover (talk) 00:04, 23 March 2013 (UTC)