Tangent in terms of Secant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $x$ be a real number such that $\cos x \ne 0$.

Then:

\(\ds \tan x\) \(=\) \(\ds +\sqrt {\sec^2 x - 1}\) if there exists an integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$
\(\ds \tan x\) \(=\) \(\ds -\sqrt {\sec^2 x - 1}\) if there exists an integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$

where $\tan$ denotes the real tangent function and $\sec$ denotes the real secant function.


Proof

\(\ds \sec^2 x - \tan^2 x\) \(=\) \(\ds 1\) Difference of Squares of Secant and Tangent
\(\ds \leadsto \ \ \) \(\ds \tan^2 x\) \(=\) \(\ds \sec^2 x - 1\)
\(\ds \leadsto \ \ \) \(\ds \tan x\) \(=\) \(\ds \pm \sqrt {\sec^2 x - 1}\)


Also, from Sign of Tangent:

If there exists integer $n$ such that $n \pi < x < \paren {n + \dfrac 1 2} \pi$, $\tan x > 0$.
If there exists integer $n$ such that $\paren {n + \dfrac 1 2} \pi < x < \paren {n + 1} \pi$, $\tan x < 0$.


When $\cos x = 0$, $\tan x$ and $\sec x$ is undefined.

$\blacksquare$


Also see