Transfinite Recursion Theorem/Formulation 1/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $M$ be a class.

Let $g$ be a strictly progressing mapping on $M$.

Let $M$ be minimally superinductive under $g$.

For an arbitrary ordinal $\alpha$, let $M_\alpha$ be the $\alpha$th element of $M$ under the well-ordered class $\struct {M, \subseteq}$.


Then:

\((1)\)   $:$   Zeroth Ordinal:       \(\ds M_0 \)   \(\ds = \)   \(\ds \O \)      
\((2)\)   $:$   Successor Ordinal:      \(\ds \forall \alpha \in \On:\)    \(\ds M_{\alpha^+} \)   \(\ds = \)   \(\ds \map g {M_\alpha} \)      
\((3)\)   $:$   Limit Ordinal:      \(\ds \forall \lambda \in K_{II}:\)    \(\ds M_\lambda \)   \(\ds = \)   \(\ds \bigcup_{\alpha \mathop < \lambda} M_\alpha \)      

where:

$\On$ denotes the class of all ordinals
$K_{II}$ denotes the class of all limit ordinals.


Proof

This is a special case of Transfinite Recursion Theorem: Formulation $4$.

Let $\On$ denote the class of all ordinals.

Let $g$ be a mapping defined for all sets.

Let $c$ be a set.


Then there exists a unique $\On$-sequence $S_0, S_1, \dots, S_\alpha, \dots$ such that:

\((1)\)   $:$      \(\ds S_0 \)   \(\ds = \)   \(\ds c \)      
\((2)\)   $:$     \(\ds \forall \alpha \in \On:\)    \(\ds S_{\alpha + 1} \)   \(\ds = \)   \(\ds \map g {S_\alpha} \)      
\((3)\)   $:$     \(\ds \forall \lambda \in K_{II}:\)    \(\ds S_\lambda \)   \(\ds = \)   \(\ds \bigcup_{\alpha \mathop < \lambda} S_\alpha \)      

where $K_{II}$ denotes the class of all limit ordinals.

$\Box$


Take $c$ to be $0$, that is $\O$.

Let us take the special case where $g$ is a strictly progressing mapping.

The result follows directly.

$\blacksquare$


Sources