Transfinite Recursion Theorem/Uniqueness

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a mapping.


Let $f$ be a mapping with a domain $y$ where $y$ is an ordinal.

Let $f$ satisfy the condition that:

$\forall x \in y: \map f x = \map G {f \restriction x}$

where $f \restriction x$ denotes the restriction of $f$ to $x$.

Let $g$ be a mapping with a domain $z$ where $z$ is an ordinal.

Let $g$ satisfy the condition that:

$\forall x \in z: \map g x = \map G {g \restriction x}$


Let $y \subseteq z$.

Then:

$\forall x \in y: \map f x = \map g x$


Proof

Proof by transfinite induction:

Suppose that:

$\forall x \in \alpha: \map f x = \map g x$

for some arbitrary ordinal $\alpha < y$.

Then $\alpha < z$.



Hence:

\(\ds \forall x \in \alpha: \, \) \(\ds \map f x\) \(=\) \(\ds \map g x\)
\(\ds \leadsto \ \ \) \(\ds f \restriction \alpha\) \(=\) \(\ds g \restriction \alpha\) Equality of Restrictions
\(\ds \leadsto \ \ \) \(\ds \map G {f \restriction \alpha}\) \(=\) \(\ds \map G {g \restriction \alpha}\) Substitution
\(\ds \leadsto \ \ \) \(\ds \map f \alpha\) \(=\) \(\ds \map g \alpha\) by hypothesis

So applying induction:

$\forall \alpha < y: \map f \alpha = \map g \alpha$

$\blacksquare$


Sources