Triangle Inequality for Complex Numbers/Corollary 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z_1, z_2 \in \C$ be complex numbers.

Let $\cmod z$ be the modulus of $z$.


Then:

$\cmod {z_1 + z_2} \ge \cmod {z_1} - \cmod {z_2}$


Proof

Let $z_3 := z_1 + z_2$.

Then:

\(\ds \cmod {z_3} + \cmod {\paren {-z_2} }\) \(\ge\) \(\ds \cmod {z_3 + \paren {-z_2} }\) Triangle Inequality for Complex Numbers
\(\ds \leadsto \ \ \) \(\ds \cmod {z_3} + \cmod {z_2}\) \(\ge\) \(\ds \cmod {z_3 - z_2}\) Complex Modulus of Additive Inverse
\(\ds \leadsto \ \ \) \(\ds \cmod {z_1 + z_2} + \cmod {z_2}\) \(\ge\) \(\ds \cmod {z_1}\) substituting $z_3 = z_1 + z_2$
\(\ds \leadsto \ \ \) \(\ds \cmod {z_1 + z_2}\) \(\ge\) \(\ds \cmod {z_1} - \cmod {z_2}\)

$\blacksquare$


Sources