Triangle Inequality for Complex Numbers/Corollary 1
Jump to navigation
Jump to search
Theorem
Let $z_1, z_2 \in \C$ be complex numbers.
Let $\cmod z$ be the modulus of $z$.
Then:
- $\cmod {z_1 + z_2} \ge \cmod {z_1} - \cmod {z_2}$
Proof
Let $z_3 := z_1 + z_2$.
Then:
\(\ds \cmod {z_3} + \cmod {\paren {-z_2} }\) | \(\ge\) | \(\ds \cmod {z_3 + \paren {-z_2} }\) | Triangle Inequality for Complex Numbers | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cmod {z_3} + \cmod {z_2}\) | \(\ge\) | \(\ds \cmod {z_3 - z_2}\) | Complex Modulus of Additive Inverse | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cmod {z_1 + z_2} + \cmod {z_2}\) | \(\ge\) | \(\ds \cmod {z_1}\) | substituting $z_3 = z_1 + z_2$ | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds \cmod {z_1 + z_2}\) | \(\ge\) | \(\ds \cmod {z_1} - \cmod {z_2}\) |
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Absolute Value: $4$