Uniformly Continuous Real Function/Examples
Jump to navigation
Jump to search
Examples of Uniformly Continuous Real Functions
Square Function
Let $S$ be the open interval $S = \openint 0 1$.
Let $f: \R \to \R$ be the real function defined as:
- $\forall x \in \R: \map f x = x^2$
Then $f$ is uniformly continuous on $S$.