Category:Examples of Uniformly Continuous Real Functions
Jump to navigation
Jump to search
This category contains examples of Uniformly Continuous Real Function.
Let $I \subseteq \R$ be a real interval.
A real function $f: I \to \R$ is said to be uniformly continuous on $I$ if and only if:
- for every $\epsilon > 0$ there exists $\delta > 0$ such that the following property holds:
- for every $x, y \in I$ such that $\size {x - y} < \delta$ it happens that $\size {\map f x - \map f y} < \epsilon$.
Formally: $f: I \to \R$ is uniformly continuous if and only if the following property holds:
- $\forall \epsilon > 0: \exists \delta > 0: \paren {x, y \in I, \size {x - y} < \delta \implies \size {\map f x - \map f y} < \epsilon}$
Pages in category "Examples of Uniformly Continuous Real Functions"
The following 2 pages are in this category, out of 2 total.