Universal Instantiation

From ProofWiki
Jump to navigation Jump to search

Theorem

Informal Statement

Suppose we have a universal statement:

$\forall x: \map P x$

where $\forall$ is the universal quantifier and $\map P x$ is a propositional function.

Then we can deduce:

$\map P {\mathbf a}$

where $\mathbf a$ is any arbitrary object we care to choose in the universe of discourse.


In natural language:

Suppose $P$ is true of everything in the universe of discourse.
Let $\mathbf a$ be an element of the universe of discourse."
Then $P$ is true of $\mathbf a$.


Universal Instantiation in Models

Let $\map {\mathbf A} x$ be a WFF of predicate logic.

Let $\tau$ be a term which is freely substitutable for $x$ in $\mathbf A$.


Then $\forall x: \map {\mathbf A} x \implies \map {\mathbf A} \tau$ is a tautology.


Also known as

Some authors call this the Rule of Universal Elimination and it is then abbreviated UE.


Sources