Upper Triangular Matrix/Examples
Jump to navigation
Jump to search
Examples of Upper Triangular Matrices
Upper Triangular Matrix with fewer Rows than Columns
An upper triangular matrix of order $m \times n$ such that $m < n$:
- $\mathbf U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1, m - 1} & a_{1m} & \cdots & a_{1, n - 1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2, m - 1} & a_{2m} & \cdots & a_{2, n - 1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3, m - 1} & a_{3m} & \cdots & a_{3, n - 1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{m - 1, m - 1} & a_{m - 1, m} & \cdots & a_{m - 1, n - 1} & a_{m - 1, n} \\ 0 & 0 & 0 & \cdots & 0 & a_{mm} & \cdots & a_{m, n - 1} & a_{mn} \\ \end{bmatrix}$
Upper Triangular Matrix with more Rows than Columns
An upper triangular matrix of order $m \times n$ such that $m > n$:
- $\mathbf U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1, n - 1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2, n - 1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3, n - 1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n - 1, n - 1} & a_{n - 1, n} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn} \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \end{bmatrix}$
Square Upper Triangular Matrix
An upper triangular square matrix of order $n$:
- $\mathbf U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1, n - 1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2, n - 1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3, n - 1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n - 1, n - 1} & a_{n - 1, n} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn} \\ \end{bmatrix}$
Example of Square Upper Triangular Matrix
This is an arbitrary example of an upper triangular square matrix:
- $\begin {pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end {pmatrix}$
Example of Non-Square Upper Triangular Matrix
This is an arbitrary example of an upper triangular matrix which is specifically not square:
- $\begin {pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 \end {pmatrix}$
Upper Triangular Matrix not in Echelon Form
This is an arbitrary example of an upper triangular square matrix which is specifically not in echelon form (non-unity variant):
- $\begin {pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end {pmatrix}$
Arbitrary Example
This is an arbitrary example of an upper triangular square matrix:
- $\begin {pmatrix} a & b & c \\ 0 & e & f \\ 0 & 0 & i \end {pmatrix}$