Definition:Triangular Matrix/Upper Triangular Matrix
Definition
An upper triangular matrix is a matrix in which all the lower triangular elements are zero.
That is, all the non-zero elements are on the main diagonal or in the upper triangle.
That is, $\mathbf U$ is upper triangular if and only if:
- $\forall a_{ij} \in \mathbf U: i > j \implies a_{ij} = 0$
Also defined as
Some sources define an upper triangular matrix only as a square matrix.
Examples
Upper Triangular Matrix with fewer Rows than Columns
An upper triangular matrix of order $m \times n$ such that $m < n$:
- $\mathbf U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1, m - 1} & a_{1m} & \cdots & a_{1, n - 1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2, m - 1} & a_{2m} & \cdots & a_{2, n - 1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3, m - 1} & a_{3m} & \cdots & a_{3, n - 1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{m - 1, m - 1} & a_{m - 1, m} & \cdots & a_{m - 1, n - 1} & a_{m - 1, n} \\ 0 & 0 & 0 & \cdots & 0 & a_{mm} & \cdots & a_{m, n - 1} & a_{mn} \\ \end{bmatrix}$
Upper Triangular Matrix with more Rows than Columns
An upper triangular matrix of order $m \times n$ such that $m > n$:
- $\mathbf U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1, n - 1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2, n - 1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3, n - 1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n - 1, n - 1} & a_{n - 1, n} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn} \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \end{bmatrix}$
Square Upper Triangular Matrix
An upper triangular square matrix of order $n$:
- $\mathbf U = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1, n - 1} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2, n - 1} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3, n - 1} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n - 1, n - 1} & a_{n - 1, n} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn} \\ \end{bmatrix}$
Example of Square Upper Triangular Matrix
This is an arbitrary example of an upper triangular square matrix:
- $\begin {pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end {pmatrix}$
Example of Non-Square Upper Triangular Matrix
This is an arbitrary example of an upper triangular matrix which is specifically not square:
- $\begin {pmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \\ 0 & 0 & 0 & 0 \end {pmatrix}$
Upper Triangular Matrix not in Echelon Form
This is an arbitrary example of an upper triangular square matrix which is specifically not in echelon form (non-unity variant):
- $\begin {pmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 6 & 7 \\ 0 & 0 & 8 & 9 \\ 0 & 0 & 0 & 10 \end {pmatrix}$
Also see
- Results about upper triangular matrices can be found here.
Sources
- 1998: Richard Kaye and Robert Wilson: Linear Algebra ... (previous) ... (next): Part $\text I$: Matrices and vector spaces: $1$ Matrices: $1.6$ Determinant and trace
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): triangular matrix
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): upper triangular matrix
- 2008: David Joyner: Adventures in Group Theory (2nd ed.) ... (previous) ... (next): Chapter $2$: 'And you do addition?': $\S 2.2$: Functions on vectors: $\S 2.2.3$: $m \times n$ matrices
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): triangular matrix
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): upper triangular matrix
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): triangular matrix
- 2014: Christopher Clapham and James Nicholson: The Concise Oxford Dictionary of Mathematics (5th ed.) ... (previous) ... (next): upper triangular matrix