User:Austrodata/Definition:Restriction of Functor
Jump to navigation
Jump to search
Let $\mathbf A$ and $\mathbf B$ be subcategories.
Let $F: \mathbf A \to \mathbf B$ be a functor.
Let $\mathbf S$ be a subcategory of $\mathbf A$.
The restriction of $F$ to $\mathbf S$,
denoted by $F|_{\mathbf S}$,
is a functor $F|_{\mathbf S}: \mathbf S \to \mathbf B$ such that:
Objects: | For each object $X$ of $\mathbf S$: | $\map {F\vert_{\mathbf S} } X = \map F X$ | |||||||
morphism: | For each morphism $f: X \to Y$ of $\mathbf S$: | $\map {F\vert_{\mathbf S} } f = \map F f$ | |||||||
Compatibility: | For each pair of composable morphisms $f, g$ in $\mathbf S$: | $\map {F\vert_{\mathbf S} } {g \circ f} = \map F {g \circ f} = \map F g \circ \map F f = \map {F\vert_{\mathbf S} } g \circ \map {F\vert_{\mathbf S} } f$ |