User:Leigh.Samphier/Matroids/Equivalence of Definitions of Matroid Base Axioms/Lemma 1

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $S$ be a finite set.

Let $\mathscr B$ satisfy the base axiom: User:Leigh.Samphier/Matroids/Axiom:Base Axioms (Matroid)/Axiom 1


Let $B_1, B_2 \in \mathscr B$.

Let $U \subseteq B_1$ and $V \subseteq B_2$ such that:

$\card V < \card U$

Let $B_2 \cap \paren{U \setminus V} = \O$.


Then:

$\exists B_3 \in \mathscr B$:
$V \subseteq B_3$
$\card{B_1 \cap B_3} > \card{B_1 \cap B_2}$


Proof

Lemma 2

$\forall B_1, B_2 \in \mathscr B : \card{B_1} = \card{B_2}$

where $\card{B_1}$ and $\card{B_2}$ denote the cardinality of the sets $B_1$ and $B_2$ respectively.

$\Box$


Let $U, V \in \mathscr I$ such that:

$\card V < \card U$

Lemma 3

$\card{V \setminus U} < \card{U \setminus V}$

$\Box$

Lemma 4

\(\ds \card {B_1}\) \(=\) \(\ds \card{B_1 \cap B_2} + \card{B_1 \setminus B_2}\)
\(\ds \card {B_2}\) \(=\) \(\ds \card{B_2 \cap B_1} + \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V}\)

$\Box$


From Subset of Set Difference iff Disjoint Set:

$U \setminus V \subseteq B_1 \setminus B_2$


We have:

\(\ds \card{B_2}\) \(=\) \(\ds \card{B_1}\) Lemma 2
\(\ds \leadsto \ \ \) \(\ds \card{B_2 \cap B_1} + \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V}\) \(=\) \(\ds \card{B_1 \cap B_2} + \card{B_1 \setminus B_2}\)
\(\ds \leadsto \ \ \) \(\ds \card{V \setminus B_1} + \card{\paren{B_2 \setminus B_1} \setminus V}\) \(=\) \(\ds \card{B_1 \setminus B_2}\) Subtract $\card{B_1 \cap B_2}$ from both sides of equation
\(\ds \) \(\ge\) \(\ds \card{U \setminus V}\) Cardinality of Subset of Finite Set
\(\ds \) \(>\) \(\ds \card{V \setminus U}\)
\(\ds \) \(\ge\) \(\ds \card{V \setminus B_1}\) As $U \subseteq B_1$
\(\ds \leadsto \ \ \) \(\ds \card{\paren{B_2 \setminus B_1} \setminus V}\) \(>\) \(\ds 0\) Subtract $\card{V \setminus B_1}$ from both sides of equation


From the contrapositive statement of Cardinality of Empty Set:

$\paren{B_2 \setminus B_1} \setminus V \ne \O$

Hence: $\exists y \in \paren{B_2 \setminus B_1} \setminus V$

From $(\text B 1)$:

$\exists z \in B_1 \setminus B_2 : \paren{B_2 \setminus \set y} \cup \set z \in \mathscr B$


Let:

$B_3 = \paren{B_2 \setminus \set y} \cup \set z$


We have:

\(\ds V\) \(\subseteq\) \(\ds B_2 \setminus \set y\) As $y \notin V$ and $V \subseteq B_2$
\(\ds \) \(\subseteq\) \(\ds \paren{B_2 \setminus \set y} \cup \set z\) Set is Subset of Union
\(\ds \) \(=\) \(\ds B_3\)


Lemma 5

$\card{B_1 \cap B_3} = \card{B_1 \cap B_2} + 1$

$\Box$


Hence:

$\card{B_1 \cap B_3} > \card{B_1 \cap B_2}$

$\blacksquare$