User:Leigh.Samphier/P-adicNumbers/Group of All Roots of Unity

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $n \in \Z_{> 0}$ be a strictly positive integer.


Let $\struct{F,+,\times}$ be a field with zero $0$ and unity $1$.

Let $F^* = F \setminus \set 0$.


Let $U$ denote the set of all roots of unity.

That is, $U = \set{x \in F : \exists n \in \Z_{>0} : x^n = 1}$


Then:

$\struct{U, \times \restriction_U}$ is a subgroup of $\struct{F^*, \times \restriction_{F^*}}$

Proof

By Definition of Power of Field Element:

$0^n = 0$

Hence:

$0 \notin U_n$

Thus:

$U_n \subseteq F^*$


From Multiplicative Group of Field is Abelian Group:

$\struct{F^*, \times \restriction_{F^*}}$ is an Abelian group


Let $x, y \in U$.

By Definition of Root of Unity:

$\exists n, m \in \Z_{>0} : x^n = y^m = 1$

We have:

\(\ds \paren{x y^{-1} }^{nm}\) \(=\) \(\ds x^{nm} \paren{y^{-1} }^{nm}\) Common Index Law for Field
\(\ds \) \(=\) \(\ds 1 \times \paren{y^{-1} }^{nm}\) Integer Power of Root of Unity is Root of Unity
\(\ds \) \(=\) \(\ds \paren{y^{-1} }^{nm}\) Definition of Unity of Field
\(\ds \) \(=\) \(\ds \paren{y^{nm} }^{-1}\) Negative Index Law for Field
\(\ds \) \(=\) \(\ds 1^{-1}\) Integer Power of Root of Unity is Root of Unity
\(\ds \) \(=\) \(\ds 1\)

From One-Step Subgroup Test:

$\struct{U, \times \restriction_U}$ is a subgroup of $\struct{F^*, \times \restriction_{F^*}}$

$\blacksquare$