Vajda's Identity/Formulation 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $F_n$ be the $n$th Fibonacci number.


Then:

$F_{n + i} F_{n + j} - F_n F_{n + i + j} = \paren {-1}^n F_i F_j$


Proof

From Honsberger's Identity:

\(\ds F_{n + i}\) \(=\) \(\ds F_n F_{i - 1} + F_{n + 1} F_i\)
\(\ds F_{n + j}\) \(=\) \(\ds F_n F_{j - 1} + F_{n + 1} F_j\)
\(\ds F_{n + i + j}\) \(=\) \(\ds F_{i - 1} F_{n + j} + F_i F_{n + j + 1}\)


Therefore:

\(\ds \) \(\) \(\ds F_{n + i} F_{n + j} - F_n F_{n + i + j}\)
\(\ds \) \(=\) \(\ds \paren {F_n F_{i - 1} + F_{n + 1} F_i} F_{n + j} - F_n \paren {F_{i - 1} F_{n + j} + F_i F_{n + j + 1} }\) a priori
\(\ds \) \(=\) \(\ds \paren {F_n F_{i - 1} + F_{n + 1} F_i} F_{n + j} - F_n F_{i - 1} F_{n + j} - F_n F_i F_{n + j + 1}\)
\(\ds \) \(=\) \(\ds \paren {F_n F_{i - 1} + F_{n + 1} F_i - F_n F_{i - 1} } F_{n + j} - F_n F_i F_{n + j + 1}\)
\(\ds \) \(=\) \(\ds \paren {F_{n + 1} F_i} F_{n + j} - F_n F_i F_{n + j + 1}\)
\(\ds \) \(=\) \(\ds F_i \paren {F_{n + 1} F_{n + j} - F_n F_{n + j + 1} }\)
\(\ds \) \(=\) \(\ds F_i \paren {-1}^{2 n + 1} \paren {F_n F_{n + j + 1} - F_{n + 1} F_{n + j} }\)
\(\ds \) \(=\) \(\ds F_i \paren {-1}^{n - j - 1} \paren {\paren {-1}^{n + j} F_n F_{n + j + 1} - \paren {-1}^{n + j} F_{n + 1} F_{n + j} }\)
\(\ds \) \(=\) \(\ds F_i \paren {-1}^{n - j - 1} \paren {\paren {-1}^{n + j} F_n F_{n + j + 1} + \paren {-1}^{n + j + 1} F_{n + 1} F_{n + j} }\)
\(\ds \) \(=\) \(\ds F_i \paren {-1}^{n - j - 1} F_{\paren {n + 1} - \paren {n + j + 1} }\) Fibonacci Number in terms of Larger Fibonacci Numbers
\(\ds \) \(=\) \(\ds F_i \paren {-1}^{n - j - 1} F_{-j}\)
\(\ds \) \(=\) \(\ds F_i \paren {-1}^{n - j - 1} \paren {-1}^{j + 1} F_j\) Fibonacci Number with Negative Index
\(\ds \) \(=\) \(\ds \paren {-1}^n F_i F_j\)

$\blacksquare$


Source of Name

This entry was named for Steven Vajda.