Variance of Poisson Distribution/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $X$ be a discrete random variable with the Poisson distribution with parameter $\lambda$.


Then the variance of $X$ is given by:

$\var X = \lambda$


Proof

From the definition of Variance as Expectation of Square minus Square of Expectation:

$\var X = \expect {X^2} - \paren {\expect X}^2$

From Expectation of Function of Discrete Random Variable:

$\ds \expect {X^2} = \sum_{x \mathop \in \Omega_X} x^2 \, \map \Pr {X = x}$


So:

\(\ds \expect {X^2}\) \(=\) \(\ds \sum_{k \mathop \ge 0} {k^2 \dfrac 1 {k!} \lambda^k e^{-\lambda} }\) Definition of Poisson Distribution
\(\ds \) \(=\) \(\ds \lambda e^{-\lambda} \sum_{k \mathop \ge 1} {k \dfrac 1 {\paren {k - 1}!} \lambda^{k - 1} }\) Note change of limit: term is zero when $k=0$
\(\ds \) \(=\) \(\ds \lambda e^{-\lambda} \paren {\sum_{k \mathop \ge 1} {\paren {k - 1} \dfrac 1 {\paren {k - 1}!} \lambda^{k - 1} } + \sum_{k \mathop \ge 1} {\frac 1 {\paren {k - 1}!} \lambda^{k - 1} } }\) straightforward algebra
\(\ds \) \(=\) \(\ds \lambda e^{-\lambda} \paren {\lambda \sum_{k \mathop \ge 2} {\dfrac 1 {\paren {k - 2}!} \lambda^{k - 2} } + \sum_{k \mathop \ge 1} {\dfrac 1 {\paren {k - 1}!} \lambda^{k - 1} } }\) Again, note change of limit: term is zero when $k-1=0$
\(\ds \) \(=\) \(\ds \lambda e^{-\lambda} \paren {\lambda \sum_{i \mathop \ge 0} {\dfrac 1 {i!} \lambda^i} + \sum_{j \mathop \ge 0} {\dfrac 1 {j!} \lambda^j} }\) putting $i = k - 2, j = k - 1$
\(\ds \) \(=\) \(\ds \lambda e^{-\lambda} \paren {\lambda e^\lambda + e^\lambda}\) Taylor Series Expansion for Exponential Function
\(\ds \) \(=\) \(\ds \lambda \paren {\lambda + 1}\)
\(\ds \) \(=\) \(\ds \lambda^2 + \lambda\)


Then:

\(\ds \var X\) \(=\) \(\ds \expect {X^2} - \paren {\expect X}^2\)
\(\ds \) \(=\) \(\ds \lambda^2 + \lambda - \lambda^2\) Expectation of Poisson Distribution: $\expect X = \lambda$
\(\ds \) \(=\) \(\ds \lambda\)

$\blacksquare$