Vector Cross Product is Anticommutative/Complex
Jump to navigation
Jump to search
Theorem
The complex cross product is anticommutative:
- $\forall z_1, z_2 \in \C: z_1 \times z_2 = -\paren {z_2 \times z_1}$
Proof
Let:
- $z_1 := x_1 + i y_1, z_2 = x_2 + i y_2$
Then:
\(\ds z_1 \times z_2\) | \(=\) | \(\ds x_1 y_2 - y_1 x_2\) | Definition 1 of Complex Cross Product | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {x_2 y_1 - y_2 x_1}\) | Real Addition is Commutative and Real Multiplication is Commutative | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {z_2 \times z_1}\) | Definition 1 of Complex Cross Product |
$\blacksquare$
Examples
Example: $\paren {2 + 5 i} \times \paren {3 - i} = -\paren {\paren {3 - i} \times \paren {2 + 5 i} }$
Example: $\paren {2 + 5 i} \times \paren {3 - i}$
Let:
- $z_1 = 2 + 5 i$
- $z_2 = 3 - i$
Then:
- $z_1 \times z_2 = -17$
where $\times$ denotes (complex) cross product.
Example: $\paren {3 - i} \times \paren {2 + 5 i}$
Let:
- $z_1 = 3 - i$
- $z_2 = 2 + 5 i$
Then:
- $z_1 \times z_2 = 17$
where $\times$ denotes (complex) cross product.
As can be seen:
- $\paren {2 + 5 i} \times \paren {3 - i} = -\paren {\paren {3 - i} \times \paren {2 + 5 i} }$
$\blacksquare$
Sources
- 1981: Murray R. Spiegel: Theory and Problems of Complex Variables (SI ed.) ... (previous) ... (next): $1$: Complex Numbers: Supplementary Problems: The Dot and Cross Product: $111 \ \text{(b)}$