Vector Cross Product is Anticommutative
Jump to navigation
Jump to search
Theorem
The vector cross product is anticommutative:
- $\forall \mathbf a, \mathbf b \in \R^3: \mathbf a \times \mathbf b = -\paren {\mathbf b \times \mathbf a}$
Complex Plane
The same result holds for complex numbers:
- $\forall z_1, z_2 \in \C: z_1 \times z_2 = -\paren {z_2 \times z_1}$
Proof 1
\(\ds \mathbf b \times \mathbf a\) | \(=\) | \(\ds \begin {bmatrix} b_i \\ b_j \\ b_k \end {bmatrix} \times \begin {bmatrix} a_i \\ a_j \\ a_k \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} b_j a_k - a_j b_k \\ b_k a_i - b_i a_k \\ b_i a_j - a_i b_j \end {bmatrix}\) | ||||||||||||
\(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds \begin {bmatrix} a_i \\ a_j \\ a_k \end {bmatrix} \times \begin {bmatrix} b_i \\ b_j \\ b_k \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} a_j b_k - a_k b_j \\ a_k b_i - a_i b_k \\ a_i b_j - a_j b_i \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \begin {bmatrix} -\paren {a_k b_j - a_j b_k} \\ -\paren {a_i b_k - a_k b_i} \\ -\paren {a_j b_i - a_i b_j} \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -1 \begin {bmatrix} b_j a_k - a_j b_k \\ b_k a_i - b_i a_k \\ b_i a_j - a_i b_j \end {bmatrix}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {\mathbf b \times \mathbf a}\) |
$\blacksquare$
Proof 2
\(\ds \paren {\mathbf a + \mathbf b} \times \paren {\mathbf a + \mathbf b}\) | \(=\) | \(\ds \mathbf a \times \mathbf a + \mathbf a \times \mathbf b + \mathbf b \times \mathbf a + \mathbf b \times \mathbf b\) | Vector Cross Product Operator is Bilinear | |||||||||||
\(\ds 0\) | \(=\) | \(\ds 0 + \mathbf a \times \mathbf b + \mathbf b \times \mathbf a + 0\) | Cross Product of Vector with Itself is Zero | |||||||||||
\(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds -\paren {\mathbf b \times \mathbf a}\) | simplifying |
$\blacksquare$
Proof 3
\(\ds \mathbf a \times \mathbf b\) | \(=\) | \(\ds \begin {vmatrix} \mathbf i & \mathbf j & \mathbf k \\ a_i & a_j & a_k \\ b_i & b_j & b_k \end {vmatrix}\) | Definition of Vector Cross Product | |||||||||||
\(\ds \) | \(=\) | \(\ds -\begin {vmatrix} \mathbf i & \mathbf j & \mathbf k \\ b_i & b_j & b_k \\ a_i & a_j & a_k \end {vmatrix}\) | Determinant with Rows Transposed | |||||||||||
\(\ds \) | \(=\) | \(\ds -\paren {\mathbf b \times \mathbf a}\) | Definition of Vector Cross Product |
$\blacksquare$
Proof 4
From the definition of the vector cross product:
The vector cross product, denoted $\mathbf a \times \mathbf b$, is defined as:
- $\mathbf a \times \mathbf b = \norm {\mathbf a} \norm {\mathbf b} \sin \theta \, \mathbf {\hat n}$
where:
- $\norm {\mathbf a}$ denotes the length of $\mathbf a$
- $\theta$ denotes the angle from $\mathbf a$ to $\mathbf b$, measured in the positive direction
- $\hat {\mathbf n}$ is the unit vector perpendicular to both $\mathbf a$ and $\mathbf b$ in the direction according to the right-hand rule.
Hence we have that:
- $\mathbf a \times \mathbf b$ is a vector whose direction is specified according to the right-hand rule
while:
- $\mathbf b \times \mathbf a$ is a vector whose direction, also specified according to the right-hand rule, is exactly the opposite of that for $\mathbf a \times \mathbf b$.
That is:
- $\mathbf a \times \mathbf b = -\mathbf b \times \mathbf a$
$\blacksquare$
Sources
- 1957: D.E. Rutherford: Vector Methods (9th ed.) ... (previous) ... (next): Chapter $\text I$: Vector Algebra: $\S 3$: $(6)$
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Cross or Vector Product: $22.13$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): vector product (cross product)
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): vector product (cross product)