Vector Cross Product satisfies Jacobi Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf a, \mathbf b, \mathbf c$ be vectors in $3$ dimensional Euclidean space.

Let $\times$ denotes the cross product.


Then:

$\mathbf a \times \paren {\mathbf b \times \mathbf c} + \mathbf b \times \paren {\mathbf c \times \mathbf a} + \mathbf c \times \paren {\mathbf a \times \mathbf b} = \mathbf 0$


That is, the cross product operation satisfies the Jacobi identity.


Proof

\(\ds \mathbf a \times \paren {\mathbf b \times \mathbf c} + \mathbf b \times \paren {\mathbf c \times \mathbf a} + \mathbf c \times \paren {\mathbf a \times \mathbf b}\) \(=\) \(\ds \paren {\mathbf {a \cdot c} } \mathbf b - \paren {\mathbf {a \cdot b} } \mathbf c\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {\mathbf {b \cdot a} } \mathbf c - \paren {\mathbf {b \cdot c} } \mathbf a\)
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \paren {\mathbf {c \cdot b} } \mathbf a - \paren {\mathbf {c \cdot a} } \mathbf b\) Lagrange's Formula
\(\ds \) \(=\) \(\ds \mathbf 0\) Dot Product Operator is Commutative

$\blacksquare$