Velocity of Rocket in Outer Space
Jump to navigation
Jump to search
Theorem
Let $B$ be a rocket travelling in outer space.
Let the velocity of $B$ at time $t$ be $\mathbf v$.
Let the mass of $B$ at time $t$ be $m$.
Let the exhaust velocity of $B$ be constant at $\mathbf b$.
Then the velocity of $B$ at time $t$ is given by:
- $\map {\mathbf v} t = \map {\mathbf v} 0 + \mathbf b \ln \dfrac {\map m 0} {\map m t}$
where $\map {\mathbf v} 0$ and $\map m 0$ are the velocity and mass of $B$ at time $t = 0$.
Proof
From Motion of Rocket in Outer Space, the equation of motion of $B$ is given by:
- $m \dfrac {\d \mathbf v} {\d t} = -\mathbf b \dfrac {\d m} {\d t}$
Hence:
\(\ds \int_0^t \dfrac {\d \mathbf v} {\d t} \rd t\) | \(=\) | \(\ds -\int_0^t \mathbf b \frac 1 m \dfrac {\d m} {\d t} \rd t\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \int_{t \mathop = 0}^t \rd \mathbf v\) | \(=\) | \(\ds -\int_{t \mathop = 0}^t \mathbf b \dfrac {\d m} m\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \bigintlimits {\mathbf v} 0 t\) | \(=\) | \(\ds -\mathbf b \bigintlimits {\ln m} 0 t\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {\mathbf v} t - \map {\mathbf v} 0\) | \(=\) | \(\ds -\mathbf b \paren {\map {\ln m} t - \map {\ln m} 0}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map {\mathbf v} t\) | \(=\) | \(\ds \map {\mathbf v} 0 + \mathbf b \ln \dfrac {\map m 0} {\map m t}\) |
$\blacksquare$
Sources
- 1992: George F. Simmons: Calculus Gems ... (previous) ... (next): Chapter $\text {B}.8$: Rocket Propulsion in Outer Space