Wallis's Product/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

\(\ds \prod_{n \mathop = 1}^\infty \frac {2 n} {2 n - 1} \cdot \frac {2 n} {2 n + 1}\) \(=\) \(\ds \frac 2 1 \cdot \frac 2 3 \cdot \frac 4 3 \cdot \frac 4 5 \cdot \frac 6 5 \cdot \frac 6 7 \cdot \frac 8 7 \cdot \frac 8 9 \cdots\)
\(\ds \) \(=\) \(\ds \frac \pi 2\)


Proof

\(\ds \prod_{n \mathop = 1}^\infty \frac {2 n} {2 n - 1} \cdot \frac {2 n} {2 n + 1}\) \(=\) \(\ds \prod_{n \mathop = 1}^\infty \frac {\paren {2 n - 0} \paren {2 n - 0} \times \dfrac 1 2 \times \dfrac 1 2} {\paren {2 n - 1} \paren {2 n + 1} \times \dfrac 1 2 \times \dfrac 1 2}\) multiplying top and bottom by $\dfrac 1 2 \times \dfrac 1 2$
\(\ds \) \(=\) \(\ds \prod_{n \mathop = 1}^\infty \frac {\paren {n - 0} \paren {n - 0} } {\paren {n - \dfrac 1 2} \paren {n + \dfrac 1 2} }\)
\(\ds \) \(=\) \(\ds \frac { \map \Gamma {\dfrac 1 2} \map \Gamma {\dfrac 3 2} } {\map \Gamma {1} \map \Gamma {1} }\) Infinite Product of Product of Sequence of n plus alpha over Sequence of n plus beta
\(\ds \) \(=\) \(\ds \frac { \sqrt \pi \times \dfrac {\sqrt \pi} 2 } {0! \times 0! }\) Gamma Function of One Half, Gamma Difference Equation, Gamma Function Extends Factorial
\(\ds \) \(=\) \(\ds \frac \pi 2\) Definition of Factorial

$\blacksquare$


Source of Name

This entry was named for John Wallis.