# Wallis's Product

## Theorem

 $\ds \prod_{n \mathop = 1}^\infty \frac {2 n} {2 n - 1} \cdot \frac {2 n} {2 n + 1}$ $=$ $\ds \frac 2 1 \cdot \frac 2 3 \cdot \frac 4 3 \cdot \frac 4 5 \cdot \frac 6 5 \cdot \frac 6 7 \cdot \frac 8 7 \cdot \frac 8 9 \cdots$ $\ds$ $=$ $\ds \frac \pi 2$

## Proof 1

 $\ds \dfrac {\sin x} x$ $=$ $\ds \paren {1 - \dfrac {x^2} {\pi^2} } \paren {1 - \dfrac {x^2} {4 \pi^2} } \paren {1 - \dfrac {x^2} {9 \pi^2} } \cdots$ $\ds$ $=$ $\ds \prod_{n \mathop = 1}^\infty \paren {1 - \dfrac {x^2} {n^2 \pi^2} }$

we substitute $x = \dfrac \pi 2$.

$\sin \dfrac \pi 2 = 1$

Hence:

 $\ds \frac 2 \pi$ $=$ $\ds \prod_{n \mathop = 1}^\infty \paren {1 - \frac 1 {4 n^2} }$ $\ds \leadsto \ \$ $\ds \frac \pi 2$ $=$ $\ds \prod_{n \mathop = 1}^\infty \paren {\frac {4 n^2} {4 n^2 - 1} }$ $\ds$ $=$ $\ds \prod_{n \mathop = 1}^\infty \frac {\paren {2 n} \paren {2 n} } {\paren {2 n - 1} \paren {2 n + 1} }$ $\ds$ $=$ $\ds \frac 2 1 \cdot \frac 2 3 \cdot \frac 4 3 \cdot \frac 4 5 \cdot \frac 6 5 \cdot \frac 6 7 \cdot \frac 8 7 \cdot \frac 8 9 \cdots$

$\blacksquare$

## Wallis's Original Proof

Wallis, of course, had no recourse to Euler's techniques.

He did this job by comparing $\ds \int_0^\pi \sin^n x \rd x$ for even and odd values of $n$, and noting that for large $n$, increasing $n$ by $1$ makes little change.

From the Reduction Formula for Integral of Power of Sine, we have:

$\ds (1): \quad \int \sin^n x \rd x = - \frac 1 n \sin^{n - 1} x \cos x + \frac {n - 1} n \int \sin^{n - 2} x \rd x$

Let $I_n$ be defined as:

$\ds I_n = \int_0^{\pi / 2} \sin^n x \rd x$

As $\cos \dfrac \pi 2 = 0$ from Shape of Cosine Function, we have from $(1)$ that:

$(2): \quad I_n = \dfrac {n-1} n I_{n - 2}$

To start the ball rolling, we note that:

$\ds I_0 = \int_0^{\pi / 2} \rd x = \frac \pi 2$
$\ds I_1 = \int_0^{\pi / 2} \sin x \rd x = \bigintlimits {-\cos x} 0 {\pi / 2} = 1$

We need to separate the cases where the subscripts are even and odd:

 $\ds I_{2 n}$ $=$ $\ds \frac {2 n - 1} {2 n} I_{2 n - 2}$ $\ds$ $=$ $\ds \frac {2 n - 1} {2 n} \cdot \frac {2 n - 3} {2 n - 2} I_{2 n - 4}$ $\ds$ $=$ $\ds \cdots$ $\ds$ $=$ $\ds \frac {2 n - 1} {2 n} \cdot \frac {2 n - 3} {2 n - 2} \cdot \frac {2 n - 5} {2 n - 4} \cdots \frac 3 4 \cdot \frac 1 2 I_0$ $\text {(A)}: \quad$ $\ds$ $=$ $\ds \frac {2 n - 1} {2 n} \cdot \frac {2 n - 3} {2 n - 2} \cdot \frac {2 n - 5} {2 n - 4} \cdots \frac 3 4 \cdot \frac 1 2 \cdot \frac \pi 2$

 $\ds I_{2 n+1}$ $=$ $\ds \frac {2 n} {2 n + 1} I_{2 n - 1}$ $\ds$ $=$ $\ds \frac {2 n} {2 n + 1} \cdot \frac {2 n - 2} {2 n - 1} I_{2 n - 3}$ $\ds$ $=$ $\ds \cdots$ $\ds$ $=$ $\ds \frac {2 n} {2 n + 1} \cdot \frac {2 n - 2} {2 n - 1} \cdot \frac {2 n - 4} {2 n - 3} \cdots \frac 4 5 \cdot \frac 2 3 I_1$ $\text {(B)}: \quad$ $\ds$ $=$ $\ds \frac {2 n} {2 n + 1} \cdot \frac {2 n - 2} {2 n - 1} \cdot \frac {2 n - 4} {2 n - 3} \cdots \frac 4 5 \cdot \frac 2 3$

By Shape of Sine Function, we have that on $0 \le x \le \dfrac \pi 2$:

$0 \le \sin x \le 1$

Therefore:

$0 \le \sin^{2 n + 2} x \le \sin^{2 n +1} x \le \sin^{2 n} x$

It follows from Relative Sizes of Definite Integrals that:

$\ds 0 < \int_0^{\pi / 2} \sin^{2 n + 2} x \rd x \le \int_0^{\pi / 2} \sin^{2 n + 1} x \rd x \le \int_0^{\pi / 2} \sin^{2 n} x \rd x$

That is:

$(3): \quad 0 < I_{2 n + 2} \le I_{2 n + 1} \le I_{2 n}$

By $(2)$ we have:

$\dfrac {I_{2 n + 2} } {I_{2 n} } = \dfrac {2 n + 1} {2 n + 2}$

Dividing $(3)$ through by $I_{2n}$ then, we have:

$\dfrac {2 n + 1} {2 n + 2} \le \dfrac {I_{2 n + 1}} {I_{2 n}} \le 1$

By Squeeze Theorem, it follows that:

$\dfrac {I_{2 n + 1} } {I_{2 n} } \to 1$ as $n \to \infty$

which is equivalent to:

$\dfrac {I_{2 n} } {I_{2 n + 1} } \to 1$ as $n \to \infty$

Now we take $(B)$ and divide it by $(A)$ to get:

$\dfrac {I_{2 n + 1} } {I_{2 n} } = \dfrac 2 1 \cdot \dfrac 2 3 \cdot \dfrac 4 3 \cdot \dfrac 4 5 \cdots \dfrac {2 n} {2 n - 1} \cdot \dfrac {2 n} {2 n + 1} \cdot \dfrac 2 \pi$

So:

$\dfrac \pi 2 = \dfrac 2 1 \cdot \dfrac 2 3 \cdot \dfrac 4 3 \cdot \dfrac 4 5 \cdots \dfrac {2 n} {2 n - 1} \cdot \dfrac {2 n} {2 n + 1} \cdot \paren {\dfrac {I_{2 n} } {I_{2 n + 1} } }$

Taking the limit as $n \to \infty$ gives the result.

$\blacksquare$

## Also presented as

This result can also be seen presented as:

$\ds \prod_{n \mathop = 1}^\infty \frac n {n - \frac 1 2} \cdot \frac n {n + \frac 1 2} = \frac \pi 2$

## Source of Name

This entry was named for John Wallis.

## Historical Note

Wallis's Product was discovered by John Wallis in $1656$.