Weak Convergence in Normed Dual Space of Reflexive Normed Vector Space is Equivalent to Weak-* Convergence/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbb F$ be a subfield of $\C$.

Let $\struct {X, \norm {\, \cdot \,}_X}$ be a reflexive normed vector space over $\mathbb F$.

Let $\struct {X^\ast, \norm {\, \cdot \,}_{X^\ast} }$ be the normed dual space of $\struct {X, \norm {\, \cdot \,}_X}$.

Let $f \in X^\ast$.


Then:

$\sequence {f_n}_{n \mathop \in \N}$ converges weakly to $f$ if and only if $\sequence {f_n}_{n \mathop \in \N}$ converges weakly-$\ast$ to $f$.


Proof

Let $J : X \to X^{**}$ be the evaluation linear transformation.

In view of Definition of Reflexive Space, $J$ is especially a surjection.

Therefore:

\(\ds f_n\) \(\weakconv\) \(\ds f\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x \in X^{**}: \, \) \(\ds \map {x} {f_n}\) \(\to\) \(\ds \map {x} f\) Definition of Weak Convergence
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x \in X: \, \) \(\ds \map {\map J x} {f_n}\) \(\to\) \(\ds \map {\map J x} f\) as $J : X \to X^{**}$ is a surjection
\(\ds \leadstoandfrom \ \ \) \(\ds \forall x \in X: \, \) \(\ds \map {f_n} x\) \(\to\) \(\ds \map f x\) Definition of $J$
\(\ds \leadstoandfrom \ \ \) \(\ds f_n\) \(\weakstarconv\) \(\ds f\) Definition of Weak-* Convergence

$\blacksquare$