131
Jump to navigation
Jump to search
Number
$131$ (one hundred and thirty-one) is:
- The $32$nd prime number
- The $2$nd positive integer after $61$ whose reciprocal, when expressed in decimal notation, contains an equal number ($13$) of each of the digits from $0$ to $9$:
- $\dfrac 1 {131} = 0 \cdotp \dot 00763 \, 35877 \, 86259 \, 54198 \, 47328 \, 24427 \, 48091 \, 60305 \, 34351 \, 14503 \, 81679 \, 38931 \, 29770 \, 99236 \, 64122 \, 13740 \, 45801 \, 52671 \, 75572 \, 51908 \, 39694 \, 65648 \, 85496 \, 18320 \, 61068 \, 7022 \dot 9$
- The $3$rd near-repdigit prime after $101$, $113$
- The $7$th palindromic prime after $2$, $3$, $5$, $7$, $11$, $101$
- The $12$th Sophie Germain prime after $2$, $3$, $5$, $11$, $23$, $29$, $41$, $53$, $83$, $89$, $113$:
- $2 \times 131 + 1 = 263$, which is prime
- The $12$th long period prime after $7$, $17$, $19$, $23$, $29$, $47$, $59$, $61$, $97$, $109$, $113$:
- $\dfrac 1 {131} = 0 \cdotp \dot 00763 \, 35877 \, 86259 \, 54198 \, 47328 \, 24427 \, 48091 \, 60305 \, 34351 \, 14503 \, 81679 \, 38931 \, 29770 \, 99236 \, 64122 \, 13740 \, 45801 \, 52671 \, 75572 \, 51908 \, 39694 \, 65648 \, 85496 \, 18320 \, 61068 \, 7022 \dot 9$
- The $15$th permutable prime after $2$, $3$, $5$, $7$, $11$, $13$, $17$, $31$, $37$, $71$, $73$, $79$, $97$, $113$
Also see
- Previous ... Next: Long Period Prime
- Previous ... Next: Near-Repdigit Prime
- Previous ... Next: Sophie Germain Prime
- Previous ... Next: Permutable Prime
- Previous ... Next: Prime Number