Abel's Test for Uniform Convergence

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\sequence {\map {a_n} z}$ and $\sequence {\map {b_n} z}$ be sequences of complex functions on a compact set $K$.

Let $\sequence {\map {a_n} z}$ be such that:

$\sequence {\map {a_n} z}$ is bounded in $K$
$\ds \sum \size {\map {a_n} z - \map {a_{n + 1} } z}$ is convergent with a sum which is bounded in $K$
$\ds \sum \map {b_n} z$ is uniformly convergent in $K$.


Then $\ds \sum \map {a_n} z \map {b_n} z$ is uniformly convergent on $K$.


Proof







First we modify the statement of Abel's Lemma

Lemma

Suppose $\sum b_k$ converges.

Let $B_k = b_k + b_{k + 1} + b_{k + 2} + \cdots$

Then:

$a_n b_n + \cdots + a_{n + k} b_{n + k} = B_n a_n + B_{n + 1} \paren {a_{n + 1} - a_n} + \cdots + B_{n + k} \paren {a_{n + k} - a_{n + k - 1} } - B_{n + k + 1} a_{n + k}$

Proof of lemma

\(\ds a_n b_n + \cdots + a_{n + k} b_{n + k}\) \(=\) \(\ds a_n \paren {B_n - B_{n + 1} } + \cdots + a_{n + k} \paren {B_{n + k} - B_{n + k + 1} }\)
\(\ds \) \(=\) \(\ds B_n a_n + B_{n + 1} \paren {a_{n + 1} - a_n} + \cdots + B_{n + k} \paren {a_{n + k} - a_{n + k - 1} } - B_{n + k + 1} a_{n + k}\)

$\Box$


Proof of theorem

We show that $\ds \sum_{j\mathop = n}^{n + k} \map {a_j} z \map {b_j} z$ is uniformly small if $n$ is large enough.

Using the notation of the lemma, since $\map {B_n} z \to 0$ uniformly, let $n$ be so large that $\size {\map {B_N} z} \le \epsilon$ in $K$ for all $N \ge n$.

Since $\sequence {\map {a_n} z}$ is uniformly bounded in $K$, let $\size {\map {a_n} z} \le M$ for all $z \in K$.

Since $\ds \sum \size {\map {a_n} z - \map {a_{n + 1} } z}$ is convergent with a sum which is bounded in $K$, let $n$ be so large that:

$\forall k \in \N: \size {a_{n + 1} - a_n} + \cdots + \size {a_{n + k} - a_{n + k - 1} } \le \epsilon$ for all $z \in K$

then we have:

$\forall z \in K: \size {B_{n + 1} \paren {a_{n + 1} - a_n} } + \cdots + \size {B_{n + k} \paren {a_{n + k} - a_{n + k - 1} } } \le M \epsilon$

Therefore:

\(\ds \size {a_n b_n + \cdots + a_{n + k} b_{n + k} }\) \(=\) \(\ds \size {B_n a_n + B_{n + 1} \paren {a_{n + 1} - a_n} + \cdots + B_{n + k} \paren {a_{n + k} - a_{n + k - 1} } + B_{n + k + 1} a_{n + k} }\) Lemma
\(\ds \) \(\le\) \(\ds \size {B_n a_n} + \size {B_{n + 1} \paren {a_{n + 1} - a_n} } + \cdots + \size {B_{n + k} \paren {a_{n + k} - a_{n + k - 1} } } + \size {B_{n + k + 1} a_{n + k} }\) Triangle Inequality for Complex Numbers
\(\ds \) \(\le\) \(\ds M \epsilon + M \epsilon + M \epsilon\)
\(\ds \) \(=\) \(\ds 3 M \epsilon\)

Therefore, $\ds \sum \map {a_n} z \map {b_n} z$ is uniformly convergent on $K$.


$\blacksquare$






Source of Name

This entry was named for Niels Henrik Abel.


Sources