Additive Inverse in Vector Space is Unique
Jump to navigation
Jump to search
Theorem
Let $\struct {\mathbf V, +, \circ}_F$ be a vector space over a field $F$, as defined by the vector space axioms.
Then for every $\mathbf v \in \mathbf V$, the additive inverse of $\mathbf v$ is unique:
- $\forall \mathbf v \in \mathbf V: \exists! \paren {-\mathbf v} \in \mathbf V: \mathbf v + \paren {-\mathbf v} = \mathbf 0$
Proof
Proof of Existence
Follows from the vector space axioms.
$\Box$
Proof of Uniqueness
Let $\mathbf v$ have inverses $\mathbf x$ and $\mathbf y$.
Then:
\(\ds \mathbf v + \mathbf x\) | \(=\) | \(\ds \mathbf 0\) | ||||||||||||
\(\, \ds \land \, \) | \(\ds \mathbf v + \mathbf y\) | \(=\) | \(\ds \mathbf 0\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \mathbf v + \mathbf x\) | \(=\) | \(\ds \mathbf v + \mathbf y\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \mathbf x\) | \(=\) | \(\ds \mathbf y\) | Vectors are Left Cancellable |
$\blacksquare$
Also see
Sources
- 1969: C.R.J. Clapham: Introduction to Abstract Algebra ... (previous) ... (next): Chapter $7$: Vector Spaces: $\S 32$. Definition of a Vector Space: Theorem $64 \ \text{(ii)}$
- 2015: Sheldon Axler: Linear Algebra Done Right (3rd ed.): p. 15