Algebra of Sets is Boolean Algebra

From ProofWiki
Jump to navigation Jump to search

Theorem

An algebra of sets is a Boolean algebra.


Proof

Let $\RR \subseteq \powerset S$ be a set $S$ upon which an algebra of sets has been constructed.

We identify:

Set union:    \(\ds \cup \)      with join $\vee$
Set intersection:    \(\ds \cap \)      with meet $\vee$
Relative complement:    \(\ds \relcomp S a \)      with complementation $\neg a$


We demonstrate that the Boolean algebra axioms (formulation $2$) are fulfilled.


Boolean Algebra Axiom $(\text {BA}_2 0)$: Closure

From Algebra of Sets Axiom $(\text {AS} 2)$: Closure under Union:

$\forall a, b \in \RR: a \cup b \in \RR$

From Algebra of Sets Axiom $(\text {AS} 3)$: Closure under Complement:

$\forall a, b \in \RR: \relcomp S a \in \RR$


Then:

\(\ds \relcomp S {a \cap b}\) \(=\) \(\ds \relcomp S a \cup \relcomp S b\) De Morgan's Laws: Complement of Intersection
\(\ds \leadsto \ \ \) \(\ds \relcomp S {\relcomp S {a \cap b} }\) \(=\) \(\ds \relcomp S {\relcomp S a \cup \relcomp S b}\) taking relative complement of both sides
\(\ds \leadsto \ \ \) \(\ds a \cap b\) \(=\) \(\ds \relcomp S {\relcomp S a \cup \relcomp S b}\) Relative Complement of Relative Complement
\(\ds \leadsto \ \ \) \(\ds a \cap b\) \(\in\) \(\ds \RR\) Algebra of Sets Axiom $(\text {AS} 2)$: Closure under Union and Algebra of Sets Axiom $(\text {AS} 3)$: Closure under Complement

Hence:

$\forall a, b \in \RR: a \cap b \in \RR$

and $\RR$ fulfils Boolean Algebra Axiom $(\text {BA}_2 0)$: Closure.

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity

We have:

\(\ds \forall a, b \in \RR: \, \) \(\ds a \cup b\) \(=\) \(\ds b \cup a\) Union is Commutative
\(\ds a \cap b\) \(=\) \(\ds b \cap a\) Intersection is Commutative


and $\RR$ fulfils Boolean Algebra Axiom $(\text {BA}_2 1)$: Commutativity.

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 2)$: Associativity

We have:

\(\ds \forall a, b, c \in \RR: \, \) \(\ds a \cup \paren {b \cup c}\) \(=\) \(\ds \paren {a \cup b} \cup c\) Union is Associative
\(\ds a \cap \paren {b \cap c}\) \(=\) \(\ds \paren {a \cap b} \cap c\) Intersection is Associative


and $\RR$ fulfils Boolean Algebra Axiom $(\text {BA}_2 2)$: Associativity.

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 3)$: Absorption Laws

We have:

\(\ds \forall a, b \in \RR: \, \) \(\ds b \cup \paren {b \cap a}\) \(=\) \(\ds b\) Union Absorbs Intersection
\(\ds \leadsto \ \ \) \(\ds \paren {a \cap b} \cup b\) \(=\) \(\ds b\) Intersection is Commutative, Union is Commutative
\(\ds \forall a, b \in \RR: \, \) \(\ds b \cap \paren {b \cup a}\) \(=\) \(\ds b\) Intersection Absorbs Union
\(\ds \leadsto \ \ \) \(\ds \paren {a \cup b} \cap b\) \(=\) \(\ds b\) Intersection is Commutative, Union is Commutative


and $\RR$ fulfils Boolean Algebra Axiom $(\text {BA}_2 3)$: Absorption Laws.

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 4)$: Distributivity

We have:

\(\ds \forall a, b, c \in \RR: \, \) \(\ds a \cap \paren {b \cup c}\) \(=\) \(\ds \paren {a \cap b} \cup \paren {a \cap c}\) Intersection Distributes over Union
\(\ds a \cup \paren {b \cap c}\) \(=\) \(\ds \paren {a \cup b} \cap \paren {a \cup c}\) Union Distributes over Intersection


and $\RR$ fulfils Boolean Algebra Axiom $(\text {BA}_2 4)$: Distributivity.

$\Box$


Boolean Algebra Axiom $(\text {BA}_2 5)$: Identity Elements
\(\ds \forall a, b \in \RR: \, \) \(\ds \paren {a \cap \relcomp S a} \cup b\) \(=\) \(\ds \O \cup b\) Intersection with Relative Complement is Empty
\(\ds \) \(=\) \(\ds b\) Union with Empty Set
\(\ds \forall a, b \in \RR: \, \) \(\ds \paren {a \cup \relcomp S a} \cap b\) \(=\) \(\ds S \cap b\) Union with Relative Complement and note
\(\ds \) \(=\) \(\ds b\) Intersection with Subset is Subset


and $\RR$ fulfils Boolean Algebra Axiom $(\text {BA}_2 5)$: Identity Elements.

$\Box$


All of the Boolean algebra axioms (formulation $2$) are fulfilled.

Hence the result.

$\blacksquare$


Sources