Arccosine Logarithmic Formulation

From ProofWiki
Jump to navigation Jump to search

Theorem

For any real number $x: -1 \le x \le 1$:

$\arccos x = \dfrac 1 i \map \ln {x + \sqrt {x^2 - 1} }$

where $\arccos x$ is the arccosine and $i^2 = -1$.


Proof

Assume $y \in \R$ such that $0 \le y \le \pi$.

\(\ds y\) \(=\) \(\ds \arccos x\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \cos y\)
\(\ds \leadstoandfrom \ \ \) \(\ds x\) \(=\) \(\ds \frac 1 2 \paren {e^{-i y} + e^{i y} }\) Euler's Cosine Identity
\(\ds \leadstoandfrom \ \ \) \(\ds 2 x\) \(=\) \(\ds e^{-i y} + e^{i y}\)
\(\ds \leadstoandfrom \ \ \) \(\ds 2 x e^{i y}\) \(=\) \(\ds 1 + e^{2 i y}\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{2 i y} - 2 x e^{i y}\) \(=\) \(\ds -1\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{2 i y} - 2 x e^{i y} + x^2\) \(=\) \(\ds x^2 - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds \paren {e^{i y} - x}^2\) \(=\) \(\ds x^2 - 1\)
\(\ds \leadstoandfrom \ \ \) \(\ds e^{i y} - x\) \(=\) \(\ds \sqrt {x^2 - 1}\)
\(\ds \leadstoandfrom \ \ \) \(\ds i y\) \(=\) \(\ds \map \ln {x + \sqrt {x^2 - 1} }\)
\(\ds \leadstoandfrom \ \ \) \(\ds y\) \(=\) \(\ds \dfrac 1 i \map \ln {x + \sqrt {x^2 - 1} }\)

$\blacksquare$


Also see