Area of Regular Polygon by Circumradius
Jump to navigation
Jump to search
Theorem
Let the circumradius of $P$ be $r$.
Then the area $\AA$ of $P$ is given by:
- $\AA = \dfrac 1 2 n r^2 \sin \dfrac {2 \pi} n$
Proof
From Regular Polygon is composed of Isosceles Triangles, let $\triangle OAB$ be one of the $n$ isosceles triangles that compose $P$.
Then $\AA$ is equal to $n$ times the area of $\triangle OAB$.
Let $d$ be the length of one side of $P$.
Then $d$ is the length of the base of $\triangle OAB$.
Let $h$ be the altitude of $\triangle OAB$.
The angle $\angle AOB$ is equal to $\dfrac {2 \pi} n$.
Then:
- $(1): \quad h = r \cos \dfrac \pi n$
- $(2): \quad d = 2 r \sin \dfrac \pi n$
So:
\(\ds \AA\) | \(=\) | \(\ds n \frac {h d} 2\) | Area of Triangle in Terms of Side and Altitude | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac n 2 \paren {r \cos \frac \pi n} \paren {2 r \sin \dfrac \pi n}\) | substituting from $(1)$ and $(2)$ above | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 n r^2 2 \paren {\cos \frac \pi n} \paren {\sin \dfrac \pi n}\) | rearranging | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 n r^2 \paren {\sin \frac {2 \pi} n}\) | Double Angle Formula for Sine | |||||||||||
\(\ds \) | \(=\) | \(\ds \frac 1 2 n r^2 \sin \frac {2 \pi} n\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 4$: Geometric Formulas: Regular Polygon of $n$ Sides Inscribed in Circle of Radius $r$: $4.17$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 7$: Geometric Formulas: Regular Polygon of $n$ Sides Inscribed in Circle of Radius $r$: $7.17.$