Associated Legendre Function of the First Kind/Examples/3, 3
Jump to navigation
Jump to search
Example of Associated Legendre Function of the First Kind
Let $\map { {P_n}^m} x$ denote an associated Legendre function of the first kind.
Then:
- $\map { {P_3}^3} x = 15 \paren {1 - x^2}^{3 / 2}$
Proof
\(\ds \map { {P_n}^m} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{m / 2} } {2^n n!} \dfrac {\d^{m + n} } {\d x^{m + n} } \paren {x^2 - 1}^n\) | Derivative Form of Associated Legendre Function of the First Kind | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \map { {P_3}^3} x\) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{3 / 2} } {2^3 3!} \dfrac {\d^{3 + 3} } {\d x^{3 + 3} } \paren {x^2 - 1}^3\) | setting $m = n = 3$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{3 / 2} } {8 \times 6} \map {\dfrac {\d^6} {\d x^6} } {x^6 - 3 x^4 + 3 x^2 - 1}\) | Cube of Difference | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\paren {1 - x^2}^{3 / 2} } {48} \paren {6!}\) | Nth Derivative of Mth Power where $n = 6$ | |||||||||||
\(\ds \) | \(=\) | \(\ds 15 \paren {1 - x^2}^{3 / 2}\) | simplifying |
$\blacksquare$
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 26$: Associated Legendre Functions: Associated Legendre Functions of the First Kind: $26.10$
- 2009: Murray R. Spiegel, Seymour Lipschutz and John Liu: Mathematical Handbook of Formulas and Tables (3rd ed.) ... (previous) ... (next): $\S 28$: Legendre and Associated Legendre Functions: Associated Legendre Functions of the First Kind: $28.58.$