Axiom:Ordering Axioms/Class Formulation

From ProofWiki
Jump to navigation Jump to search

Definition

Let $V$ be a basic universe.

Let $\RR \subseteq V \times V$ be a relation on $V$.


$\RR$ is an ordering in $V$ if and only if $\RR$ satisfies the axioms:

\((1)\)   $:$   $\RR$ is reflexive      \(\ds \forall a \in \Field \RR:\) \(\ds a \mathrel \RR a \)      
\((2)\)   $:$   $\RR$ is transitive      \(\ds \forall a, b, c \in \Field \RR:\) \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \)      
\((3)\)   $:$   $\RR$ is antisymmetric      \(\ds \forall a, b \in \Field \RR:\) \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \)      

where $\Field \RR$ denotes the field of $\RR$.


These criteria are called the ordering axioms.


Also see

  • Results about orderings can be found here.