Axiom:Ordering Axioms

From ProofWiki
Jump to navigation Jump to search

Definition

Let $S$ be a set.

Let $\RR \subseteq S \times S$ be a relation on $S$.

Formulation 1

$\RR$ satisfies the ordering axioms if and only if:

\((1)\)   $:$   $\RR$ is reflexive      \(\ds \forall a \in S:\) \(\ds a \mathrel \RR a \)      
\((2)\)   $:$   $\RR$ is transitive      \(\ds \forall a, b, c \in S:\) \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \)      
\((3)\)   $:$   $\RR$ is antisymmetric      \(\ds \forall a, b \in S:\) \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \)      


Formulation 2

$\RR$ satisfies the ordering axioms if and only if:

\((1)\)   $:$   \(\ds \RR \circ \RR \)      
\((2)\)   $:$   \(\ds \RR \cap \RR^{-1} = \Delta_S \)      

where:

$\circ$ denotes relation composition
$\RR^{-1}$ denotes the inverse of $\RR$
$\Delta_S$ denotes the diagonal relation on $S$.


Class Theory

Let $V$ be a basic universe.

Let $\RR \subseteq V \times V$ be a relation on $V$.


$\RR$ satisfies the ordering axioms if and only if:

\((1)\)   $:$   $\RR$ is reflexive      \(\ds \forall a \in \Field \RR:\) \(\ds a \mathrel \RR a \)      
\((2)\)   $:$   $\RR$ is transitive      \(\ds \forall a, b, c \in \Field \RR:\) \(\ds a \mathrel \RR b \land b \mathrel \RR c \implies a \mathrel \RR c \)      
\((3)\)   $:$   $\RR$ is antisymmetric      \(\ds \forall a, b \in \Field \RR:\) \(\ds a \mathrel \RR b \land b \mathrel \RR a \implies a = b \)      

where $\Field \RR$ denotes the field of $\RR$.


Also see

  • Results about orderings can be found here.