# Axiom of Specification from Replacement and Empty Set

## Theorem

The Axiom of Specification is a consequence of:

and

## Outline of Proof

Take some set $A$ and some propositional function $\map P x$.

We obtain the set:

- $ B = \set {x \in A : \map P x}$

by defining the mapping:

- $\map f x = \begin{cases}

x & : \map P x \\ w & : \text{otherwise} \end{cases}$

on $A$, where we choose some fixed $w \in A : \map P w$.

We obtain its image with the Axiom of Replacement.

This mapping maps all of the $x \in A$ that fulfill $\map P x$ to themselves, ensuring that they are in the image.

It redirects the elements that don't fulfill $\map P x$ to some fixed $w$ that does fulfill $\map P x$.

Thus, the image we have obtained is $B$.

We must also deal with the special case where no elements in $A$ fulfill $\map P x$.

We must map all elements to something to fulfill the mapping definition.

All elements need to be redirected to a $w$ that fulfills $\map P x$, but here, there is no such $w$.

However, the Axiom of the Empty Set provides us with the desired set.

Thus, we can produce the set $B$ both when it is empty and when it is non-empty.

While this proof outline would suffice as a proof, the construction of set-theoretic mappings relies on Cartesian Product Exists and is Unique, which relies on Axiom of Specification, making such a proof circular in this context.

We thus must define a propositional function that is not set theoretic to act as the above $f$, leading to a proof that is conceptually the same, but more tedious.

## Proof

This article needs proofreading.In particular: proof is tediousIf you believe all issues are dealt with, please remove `{{Proofread}}` from the code.To discuss this page in more detail, feel free to use the talk page.When this work has been completed, you may remove this instance of `{{Proofread}}` from the code. |

Let $A$ be an arbitrary set.

Let $\map P x$ be an arbitrary propositional function.

It is to be shown that there exists a set $B$ consisting of exactly the $y \in A$ such that $\map P y$.

That is:

- $\forall A: \exists B: \forall y: \paren {y \in B \iff \paren {y \in A \land \map P y} }$

By Law of Excluded Middle, there are two choices:

- $\exists y \in A : \map P y$

or:

- $\not \exists y \in A : \map P y$

Suppose $\not \exists y \in A : \map P x$.

By Axiom of the Empty Set, take $B = \O$.

Take arbitrary $A$ and $y$.

Assume $y \in B$.

This contradicts the empty set definition.

By Rule of Explosion, we have:

- $y \in A \land \map P y$

giving:

- $y \in B \implies \paren {y \in A \land \map P y}$

Now assume:

- $y \in A \land \map P y$

This contradicts our assumption that:

- $\not \exists y \in A : \map P y$

By Rule of Explosion, we have:

- $y \in B$

giving:

- $\paren {y \in A \land \map P y} \implies y \in B$

Thus:

- $\paren {y \in A \land \map P y} \iff y \in B$

and by Universal Generalisation and Existential Generalisation:

- $\forall A: \exists B: \forall y: \paren {y \in B \iff \paren {y \in A \land \map P y} }$

This shows that the Axiom of Specification holds when:

- $\not \exists y \in A : \map P y$

$\Box$

Suppose $\exists y \in A : \map P y$.

Take some fixed $w \in A : \map P w$.

Define the propositional function $\map Q {x, z}$ as follows:

- $\paren {\map P x \land z = x} \lor \paren {\neg \map P x \land z = w}$

Usually this would be written as the mapping:

- $\map f x = \begin {cases}

x & : \map P x \\ w & : \text{otherwise} \end {cases}$

It is to be shown that $\map Q {x, z}$ determines a mapping.

That is:

- $\forall x: \exists a: \forall z: \paren {\map Q {x, z} \iff a = z}$

Take arbitrary $x$ and $z$.

Assume that $\map Q {x, z}$, giving:

- $\paren {\map P x \land z = x} \lor \paren {\neg \map P x \land z = w}$

By Law of Excluded Middle, there are two choices:

- $\map P x$

or:

- $\neg \map P x$

Suppose $\map P x$.

Aiming for a contradiction, suppose that:

- $\paren {\neg \map P x \land z = w}$

Then we have the contradiction:

- $\map P x \land \neg \map P x$

Thus we have:

- $\neg \paren{\neg \map P x \land z = w}$

and by Modus Tollendo Ponens:

- $\paren {\map P x \land z = x}$

Take $a=x$.

Thus, for all $z$ such that $\map Q {x, z}$, we have $a = x = z$, giving:

- $\map Q {x, z} \implies a = z$

Suppose $\neg \map P x$.

Aiming for a contradiction, suppose that:

- $\paren {\map P x \land z = x}$

Then we have the contradiction:

- $\map P x \land \neg \map P x$

Thus we have:

- $\neg \paren {\map P x \land z = x}$

and by Modus Tollendo Ponens:

- $\paren {\neg \map P x \land z = w}$

Take $a=w$.

Thus, for all $z$ such that $\map Q {x, z}$, we have $a = w = z$, giving:

- $\map Q {x, z} \implies a = z$

Thus:

- $\map Q {x, z} \implies a = z$

follows from both $\map P x$ and $\neg \map P x$.

By Universal Generalisation and Existential Generalisation:

- $\forall x: \exists a: \forall z: \paren {\map Q {x, z} \iff a = z}$

and $\map Q {x, y}$ determines a mapping.

$\Box$

We now have a propositional function $\map Q {x, y}$ satisfying the premise of Axiom of Replacement, giving:

- $\forall A: \exists B: \forall y: \paren {y \in B \iff \exists x \in A : \map Q {x, y} }$

By definition of $\map Q {x, y}$, we have:

- $\forall A: \exists B: \forall y: \paren {y \in B \iff \exists x \in A : \paren {\paren {\map P x \land y = x} \lor \paren {\neg \map P x \land y = w} } }$

where $w \in A$ and $\map P w$.

We must show that the Axiom of Specification holds:

- $\forall A: \exists B: \forall y: \paren {y \in B \iff \paren {y \in A \land \map P y} }$

Assume $y \in B$.

By the Axiom of Replacement, we have:

- $\paren {\map P x \land y = x} \lor \paren {\neg \map P x \land y = w}$

for some $x \in A$.

$\map P x \land y = x$ and $x \in A$ imply $y \in A \land \map P y$.

Recalling that $w \in A$ and $\map P w$, $\neg \map P x \land y = w$ implies $y \in A \land \map P y$.

Thus:

- $y \in B \implies \paren {y \in A \land \map P y}$

Now assume $y \in A \land \map P y$.

Then there is an $x$, namely $x = y$, such that:

- $\exists x \in A : \paren {\map P x \land y = x}$

By Rule of Addition:

- $\exists x \in A : \paren {\paren {\map P x \land y = x} \lor \paren {\neg \map P x \land y = w} }$

Thus, by the Axiom of Replacement we have $y \in B$.

Thus:

- $\paren {y \in A \land \map P y} \implies y \in B$

This completes the biconditional:

- $y \in B \iff \paren {y \in A \land \map P y}$

By Universal Generalisation and Existential Generalisation:

- $\forall A: \exists B: \forall y: \paren {y \in B \iff \paren {y \in A \land \map P y} }$

This shows that the Axiom of Specification holds when:

- $\exists y \in A : \map P y$

$\Box$

Thus, the Axiom of Specification holds both when:

- $\exists y \in A : \map P y$

and when:

- $\not \exists y \in A : \map P y$

completing the proof.

$\blacksquare$