Binomial Coefficient/Examples/Number of Bridge Hands/Prime Factors

From ProofWiki
Jump to navigation Jump to search

Example of Factorial

The prime decomposition of the number of bridge hands is given as:

$\dbinom {52} {13} = 2^4 \times 5^2 \times 7^2 \times 17 \times 23 \times 41 \times 43 \times 47$


Proof

We have by definition of binomial coefficient:

$\dbinom {52} {13} = \dfrac {52!} {13! \, 39!}$

Thus it is necessary to determine the prime factors of each of the contributing factorials here.


From Prime Factors of $52!$:

$52! = 2^{49} \times 3^{23} \times 5^{12} \times 7^8 \times 11^4 \times 13^4 \times 17^3 \times 19^2 \times 23^2 \times 29 \times 31 \times 37 \times 41 \times 43 \times 47$


From Prime Factors of $39!$:

$39! = 2^{35} \times 3^{18} \times 5^8 \times 7^5 \times 11^3 \times 13^3 \times 17^2 \times 19^2 \times 23 \times 29 \times 31 \times 37$


From Prime Factors of $13!$:

$13! = 2^{10} \times 3^5 \times 5^2 \times 7 \times 11 \times 13$


For each prime factor $p$ of $\dbinom {52} {13}$, let $a_p$ be the integer such that:

$p^{a_p} \divides \dbinom {52} {13}$
$p^{a_p + 1} \nmid \dbinom {52} {13}$


Taking the prime factors in turn:

\(\ds a_2\) \(=\) \(\ds 49 - 35 - 10\)
\(\ds \) \(=\) \(\ds 4\)
\(\ds a_3\) \(=\) \(\ds 23 - 18 - 5\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds a_5\) \(=\) \(\ds 12 - 8 - 2\)
\(\ds \) \(=\) \(\ds 2\)
\(\ds a_7\) \(=\) \(\ds 8 - 5 - 1\)
\(\ds \) \(=\) \(\ds 2\)
\(\ds a_{11}\) \(=\) \(\ds 4 - 3 - 1\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds a_{13}\) \(=\) \(\ds 4 - 3 - 1\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds a_{17}\) \(=\) \(\ds 3 - 2\)
\(\ds \) \(=\) \(\ds 1\)
\(\ds a_{19}\) \(=\) \(\ds 2 - 2\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds a_{23}\) \(=\) \(\ds 2 - 1\)
\(\ds \) \(=\) \(\ds 1\)
\(\ds a_{29}\) \(=\) \(\ds 1 - 1\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds a_{31}\) \(=\) \(\ds 1 - 1\)
\(\ds \) \(=\) \(\ds 0\)
\(\ds a_{37}\) \(=\) \(\ds 1 - 1\)
\(\ds \) \(=\) \(\ds 0\)

Finally:

$a_{41} = a_{43} = a_{47} = 1$

Hence the result.

$\blacksquare$


Sources