Binomial Coefficient of Minus Half

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $k \in \Z$.

$\dbinom {-\frac 1 2} k = \dfrac {\paren {-1}^k} {4^k} \dbinom {2 k} k$

where $\dbinom {-\frac 1 2} k$ denotes a binomial coefficient.


Proof

From Product of r Choose k with r Minus Half Choose k:

$\dbinom r k \dbinom {r - \frac 1 2} k = \dfrac {\dbinom {2 r} k \dbinom {2 r - k} k} {4^k}$


Setting $r = -\dfrac 1 2$:

\(\ds \dbinom {-\frac 1 2} k \dbinom {-1} k\) \(=\) \(\ds \frac 1 {4^k} \dbinom {-1} k \dbinom {-1 - k} k\)
\(\ds \leadsto \ \ \) \(\ds \dbinom {-\frac 1 2} k\) \(=\) \(\ds \frac 1 {4^k} \dbinom {-1 - k} k\)
\(\ds \) \(=\) \(\ds \frac {\paren {-1}^k} {4^k} \dbinom {k - \paren {-1 - k} - 1} k\) Negated Upper Index of Binomial Coefficient
\(\ds \) \(=\) \(\ds \frac {\paren {-1}^k} {4^k} \dbinom {2 k} k\) simplifying

$\blacksquare$


Sources