Binomial Coefficient of Half
Jump to navigation
Jump to search
Theorem
Let $k \in \Z$.
- $\dbinom {\frac 1 2} k = \dfrac {\left({-1}\right)^{k - 1} } {4^k \left({2 k - 1}\right)} \dbinom {2 k} k$
where $\dbinom {\frac 1 2} k$ denotes a binomial coefficient.
Corollary
Let $k \in \Z_{\ge 0}$.
- $\dbinom {\frac 1 2} k = \dfrac {\paren {-1}^{k - 1} } {2^{2 k - 1} \paren {2 k - 1} } \dbinom {2 k - 1} k - \delta_{k 0}$
where:
- $\dbinom {\frac 1 2} k$ denotes a binomial coefficient
- $\delta_{k 0}$ denotes the Kronecker delta.
Proof
\(\ds \dbinom {\frac 1 2} k\) | \(=\) | \(\ds \dfrac {1/2} {1/2 - k} \dbinom {1/2 - 1} k\) | Factors of Binomial Coefficient: Corollary 1 | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {1 - 2 k} \dbinom {-1/2} k\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 {1 - 2 k} \dfrac {\left({-1}\right)^k} {4^k} \dbinom {2 k} k\) | Binomial Coefficient of Minus Half | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\left({-1}\right)^{k - 1} } {4^k \left({2 k - 1}\right)} \dbinom {2 k} k\) | simplifying |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.6$: Binomial Coefficients: Exercise $53 \ \text{(b)}$