Cancellation Law for Field Product
Jump to navigation
Jump to search
Theorem
Let $\struct {F, +, \times}$ be a field whose zero is $0_F$ and whose unity is $1_F$.
Let $a, b, c \in F$.
Then:
- $a \times b = a \times c \implies a = 0_F \text { or } b = c$
Proof
Let $a \times b = a \times c$.
Then:
\(\ds a\) | \(\ne\) | \(\ds 0_F\) | ||||||||||||
\(\ds \leadsto \ \ \) | \(\ds \exists a^{-1} \in F: \, \) | \(\ds a^{-1} \times a\) | \(=\) | \(\ds 1_F\) | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a^{-1} \times \paren {a \times b}\) | \(=\) | \(\ds a^{-1} \times \paren {a \times c}\) | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \paren {a^{-1} \times a} \times b\) | \(=\) | \(\ds \paren {a^{-1} \times a} \times c\) | Field Axiom $\text M1$: Associativity of Product | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds 1_F \times b\) | \(=\) | \(\ds 1_F \times c\) | Field Axiom $\text M4$: Inverses for Product | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds b\) | \(=\) | \(\ds c\) | Field Axiom $\text M3$: Identity for Product |
That is:
- $a \ne 0 \implies b = c$
$\Box$
Suppose $b \ne c$.
Then by Rule of Transposition:
- $\map \neg {a \ne 0}$
that is:
- $a = 0_F$
and we note that in this case:
- $a \times b = 0_F = a \times c$
$\blacksquare$
Sources
- 1973: C.R.J. Clapham: Introduction to Mathematical Analysis ... (previous) ... (next): Chapter $1$: Axioms for the Real Numbers: $2$. Fields: Theorem $3 \ \text {(vi)}$