Canonical Mapping of Locale to Powerset of Points is Frame Homomorphism

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct{L, \preceq}$ be a locale.


Let $\map {\operatorname{pt}} L$ denote the points of $L$ as completely prime filters.


For each $a \in L$, let:

$\Sigma_a = \set{p \in \map {\operatorname{pt}} L : a \in p}$


Let $\Sigma : L \to \powerset {\map {\operatorname{pt}} L}$ be the mapping defined by:

$\forall a \in L : \map \Sigma a = \Sigma_a$

where $\powerset {\map {\operatorname{pt}} L}$ denotes the powerset of $\map {\operatorname{pt}} L$.


Then:

$\Sigma: \struct{L, \preceq} \to \struct{\powerset {\map {\operatorname{pt}} L}, \subseteq}$ is a frame homomorphism.


Proof

$\Sigma$ Preserves Arbitrary Supremums

Let $\set{a_i : i \in I}$ be an indexed family of elements of $L$.


Let $\ds \bigvee_{i \in I} a_i$ denote the supremum of $\set{a_i : i \in I}$.


We have:

\(\ds \forall p \in \map {\operatorname{pt} } L: \, \) \(\ds p\) \(\in\) \(\ds \map \Sigma {\bigvee_{i \in I} a_i}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \bigvee_{i \in I} a_i\) \(\in\) \(\ds p\) Definition of $\map \Sigma {\bigvee_{i \in I} a_i}$
\(\ds \leadstoandfrom \ \ \) \(\ds \exists i \in I : a_i\) \(\in\) \(\ds p\) Characterization of Completely Prime Filter in Complete Lattice
\(\ds \leadstoandfrom \ \ \) \(\ds \exists i \in I : p\) \(\in\) \(\ds \map \Sigma {a_i}\) Definition of $\Sigma$
\(\ds \leadstoandfrom \ \ \) \(\ds p\) \(\in\) \(\ds \bigcup_{i \in I} \map \Sigma {a_i}\) Definition of Set Union


By definition of set Equlity:

$\ds \map \Sigma {\bigvee_{i \in I} a_i} = \bigcup_{i \in I} \map \Sigma {a_i}$

It follows that $\Sigma$ is arbitrary join preserving by definition.

$\Box$


$\Sigma$ Preserves Finite Infimums

Let $\set{a_i : i \in I}$ be an indexed family of elements of $L$ where the indexing set $I$ finite.


Let $\ds \bigwedge_{i \in I} a_i$ denote the infimum of $\set{a_i : i \in I}$.


We have:

\(\ds \forall p \in \map {\operatorname{pt} } L: \, \) \(\ds p\) \(\in\) \(\ds \map \Sigma {\bigwedge_{i \in I} a_i}\)
\(\ds \leadstoandfrom \ \ \) \(\ds \bigwedge_{i \in I} a_i\) \(\in\) \(\ds p\) Definition of $\map \Sigma {\bigwedge_{i \in I} a_i}$
\(\ds \leadstoandfrom \ \ \) \(\ds \forall i \in I : a_i\) \(\in\) \(\ds p\) Characterization of Completely Prime Filter in Complete Lattice
\(\ds \leadstoandfrom \ \ \) \(\ds \forall i \in I : p\) \(\in\) \(\ds \map \Sigma {a_i}\) Definition of $\Sigma$
\(\ds \leadstoandfrom \ \ \) \(\ds p\) \(\in\) \(\ds \bigcap_{i \in I} \map \Sigma {a_i}\) Definition of Set Intersection


By definition of set Equlity:

$\ds \map \Sigma {\bigwedge_{i \in I} a_i} = \bigcap_{i \in I} \map \Sigma {a_i}$

It follows that $\Sigma$ is finite meet preserving by definition.

$\Box$


It has been shown that $\Sigma$ is both arbitrary join preserving and finite meet preserving and so is a frame homomorphism by definition.

$\blacksquare$


Sources